Linking metabolomics to diseases using human genetics: a CLSA study

Yiheng Chen, MSc PhD Student in Human Genetics Lady Davis Institute for Medical Research, Jewish General Hospital, McGill University



#### nature genetics

Article

https://doi.org/10.1038/s41588-022-01270-1

## Genomic atlas of the plasma metabolome prioritizes metabolites implicated in human diseases

| Received: 14 March 2022           | Yiheng Chen <sup>1,2</sup> , Tianyuan Lu 🕲 <sup>1,3,4</sup> , Ulrika Pettersson-Kymmer <sup>5</sup> ,                                                                                                                       |
|-----------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Accepted: 18 November 2022        | Isobel D. Stewart <sup>6</sup> , Guillaume Butler-Laporte <sup>17</sup> , Tomoko Nakanishi <sup>12,8,9</sup> ,<br>Agustin Cerani <sup>17</sup> , Kevin Y. H. Liang <sup>1,3</sup> , Satoshi Yoshiji <sup>1,2,8,9</sup> ,    |
| Published online: 12 January 2023 | Julian Daniel Sunday Willett <sup>1,3,10</sup> , Chen-Yang Su <sup>® 1,11</sup> , Parminder Raina <sup>12,13</sup> ,                                                                                                        |
| Check for updates                 | Celia M. T. Greenwood <sup>1,3,7,14</sup> , Yossi Farjoun <sup>1,4,15,16</sup> , Vincenzo Forgetta <sup>1,4</sup> ,<br>Claudia Langenberg <sup>17,18,6</sup> , Sirui Zhou <sup>1,2</sup> , Claes Ohlsson <sup>19,20</sup> & |
|                                   | J. Brent Richards 🕲 <sup>1,2,4,7,21,22</sup> 🖂                                                                                                                                                                              |

## Table of contents

- Background
- Methods
- Data
- Study
  - Research aims
  - Design
  - Results
  - Conclusion

#### Background

#### What are metabolites?





## What factors can influence metabolites?



#### How are metabolites measured?

• High performance liquid chromatography-mass spectrometry (HPLC/LC-MS)



>1000 metabolites

#### Background

## Why do we need to study metabolites?



(Lynch & Adams et al., 2021; Siddik, & Shin 2019; Chen et al., 2021; Image generated using Biorender.com)

#### Background

## Challenges?

- The metabolite-disease associations are susceptible to
  - Reverse causation (e.g., obesity vs metabolites)
  - Confounding (e.g., cardiovascular disease vs metabolites -- confounding factor: obesity)



## Table of contents

- Background
- Methods
- Data
- Study
  - Research aims
  - Design
  - Results
  - Conclusion

#### Methods

# Randomized controlled study to investigate metabolite and diseases



#### **Advantages**

- Reduce the bias related to confounding by the randomization process
- 2. Prospective design to avoid reverse causation

#### Disadvantages

- 1. Costly
- 2. Long duration
- 3. Unethical for potentially harmful interventions

#### Mendelian Randomization for metabolite and diseases



#### Methods

## **PLOS MEDICINE**

🔓 OPEN ACCESS 🖻 PEER-REVIEWED

RESEARCH ARTICLE

#### Vitamin D and Risk of Multiple Sclerosis: A Mendelian Randomization Study

Lauren E. Mokry, Stephanie Ross, Omar S. Ahmad, Vincenzo Forgetta, George Davey Smith, Aaron Leong, Celia M. T. Greenwood, George Thanassoulis, J. Brent Richards 🖸

Published: August 25, 2015 • https://doi.org/10.1371/journal.pmed.1001866

Fig 4. Mendelian randomization estimate of the association of 25OHD level with risk of multiple sclerosis.



#### **Mendelian Randomization assumptions**



#### **Mendelian Randomization**

• **Definition**: use measured variation in genes of known phenotypes to examine the causal effect of a modifiable exposure (e.g., vitamin D supplementation) on disease (e.g., multiples sclerosis)

#### Advantages:

- Avoid confounding by simulating randomized control trials: According to Mendel's second law - Independent assortment: <u>alleles sort into</u> <u>gametes independently and randomly</u>
- Avoid reverse causality: <u>genes function before the occurrence of</u> <u>disease outcomes</u>.

#### Mendelian Randomization for metabolite and diseases



Genome-wide association study (GWAS) to identify genetic variants that are associated with vitamin D levels



Variant 1

# The effect of the same variant on multiple sclerosis assessed in another GWAS



Modified from https://www.ebi.ac.uk/trainingbeta/online/courses/gwas-catalogue-exploring-snp-traitassociations/what-is-gwas-catalog/what-are-genome-wideassociation-studies-gwas/

## Table of contents

- Background
- Methods

#### Data

- Study
  - Research aims
  - Design
  - Results
  - Conclusion

## Canadian Longitudinal study of aging (CLSA)



Figure 1. CLSA data collection timeline.

The CLSA Comprehensive cohort are:

- more educated,
- have higher household income,
- more Canadian born,
- better general health.





Data



#### **Genomics data in CLSA**

- 26,622 individuals
  - 50% are females
  - 93% were identified as European ancestry
- 794,409 genotyped variants
- ~308 million imputed genetic variants (using the TopMed reference panel)

#### Metabolomics data in CLSA

- EDTA plasma
- HPLC/LC-MS (by Metabolon Inc.)
- 1,314 biochemicals, with 1,071 compounds of known identity (named biochemicals) and 243 compounds of unknown structural identity (unnamed biochemicals).
- Metabolomics data after different normalization and imputation steps are provided
  - Data after batch normalization or QC matrix normalization
  - Data without or with imputed values with minimum value detected for a given metabolite

# Table of contents

- Background
- Methods
- Data

## • Study

- Research aims
- Design
- Results
- Conclusion

#### nature genetics

Article

https://doi.org/10.1038/s41588-022-01270-1

#### Genomic atlas of the plasma metabolome prioritizes metabolites implicated in human diseases

| Received: 14 March 2022           | Yiheng Chen <sup>1,2</sup> , Tianyuan Lu <sup>® 1,3,4</sup> , Ulrika Pettersson-Kymmer⁵,                                                                                                                                   |
|-----------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Accepted: 18 November 2022        | Isobel D. Stewart <sup>6</sup> , Guillaume Butler-Laporte <sup>17</sup> , Tomoko Nakanishi <sup>12,8,9</sup> ,<br>Agustin Cerani <sup>17</sup> , Kevin Y. H. Liang <sup>13</sup> , Satoshi Yoshiji <sup>1,2,8,9</sup>      |
| Published online: 12 January 2023 | Julian Daniel Sunday Willett <sup>1,3,10</sup> , Chen-Yang Su <sup>(1,1)</sup> , Parminder Raina <sup>12,13</sup> ,                                                                                                        |
| Check for updates                 | Celia M. T. Greenwood <sup>13,7,14</sup> , Yossi Farjoun <sup>1,4,15,16</sup> , Vincenzo Forgetta <sup>1,4</sup> ,<br>Claudia Langenberg <sup>17,18,6</sup> , Sirui Zhou <sup>1,2</sup> , Claes Ohlsson <sup>19,20</sup> & |
|                                   | J. Brent Richards (12,4,7,21,22)                                                                                                                                                                                           |

#### **Project** aims

Aim 1: Identify the genetic determinants of circulating metabolites

Aim 2: Identify potentially causal metabolites for 12 traits and diseases using Mendelian Randomization



#### **Project** aims

#### Aim 1: Identify the genetic determinants of circulating metabolites

Aim 2: Identify potentially causal metabolites for 12 traits and diseases using Mendelian Randomization



## **Analysis design** – GWAS

#### **GWAS** for metabolites and metabolite ratios

- Up to 8,299 unrelated individuals in European ancestry from the CLSA cohort
- Surveyed 1091 metabolites (present in over 50% of individuals) and 309 metabolite ratios

Conditional and joint analysis (COJO)

#### mQTL and mrQTL

Conditional independent genome-wide significant associations of metabolites (mQTL) and metabolite ratios (mrQTL)

**mQTL**: metabolite quantitative trait loci **mrQTL**: metabolite ratio quantitative trait loci

-- Associations of metabolite levels and genetic loci



-- Novelty of associations and heritability of metabolite levels



-- Genetic architecture of metabolite levels



Polygenicity

28

-- Associations of metabolite ratios and genetic loci



-- Associations of metabolite ratios and genetic loci

- 16 additional associations that were not captured by single metabolite GWAS
- E.g., rs2472297caffeine/paraxanthine

(the closest gene is CYP1A2)



Caffeine metabolism.

## Analysis design – identification of effector genes



**eQTL**: expression quantitative trait loci **sQTL**: splicing quantitative trait loci

#### -- Assignment of effector genes



-- Explored the linkage of the effector genes with drug and phenotype information



#### **Project** aims

Aim 1: Identify the genetic determinants of circulating metabolites

Aim 2: Identify potentially causal metabolites for 12 traits and diseases using Mendelian Randomization



#### Study 2

### Analysis design – mendelian randomization



#### Study 2 - MR

#### **Results** -- Metabolites and metabolite ratios that have estimated causal effect on <u>aging-related</u> traits and diseases



#### Study 2 - MR

#### **Results** -- Metabolites and metabolite ratios that have estimated causal effect on <u>metabolism-related</u> traits and diseases



#### Study 2 - MR

**Results** -- Metabolites and metabolite ratios that have estimated causal effect on <u>immune-related</u> traits and diseases



-- metabolite with estimated causal effect on eBMD



# **Observational results:** Association between orotate and hip fracture risk in an independent cohort

|         | OR   | 95% CI    | P value              |
|---------|------|-----------|----------------------|
| orotate | 1.15 | 1.08-1.15 | 1.3x10 <sup>-5</sup> |

-- metabolite with estimated causal effect on BMI



--Effect of metabolite on eBMD and asthma that are dependent or independent of BMI





## Limitation of the study

- Most available disease and trait GWAS are from individuals in European ancestry
- Metabolomics data are relative measurements
- Low statistical power of MR

## Conclusion

- We identified genetic determinants of circulating metabolites.
- We inferred the causal effect of metabolite levels and ratios on twelve traits and diseases that are predominantly influenced by different mechanisms (aging, metabolism, and immune response).

## Acknowledgement

- Prof. Brent Richards
  - Yann Ilboudo
  - Tianyuan Lu
  - Satoshi Yoshiji
  - Kevin Liang
  - Takayoshi Sasako
  - Vince Forgetta
  - Julian Willett
  - Guillaume Butler-Laporte
  - Tomoko Nakanishi
  - Darin Adra
  - Joseph Farjoun
  - Laetitia Lauren
  - David Morrison
- Prof. Celia Greenwood
  - Kathleen Klein
  - Lai Jiang

- Yixiao Zeng
- Ting Zhang
- Prof. Danilo Bzdok
- Prof. Sirui Zhou
- Prof. Claudia Langenberg
  - Isobel Stewart
- Prof. Nick Wareham
- Prof. Maik Pietzner









Fonds de recherche Santé Québec 🎄 🖗

# Thank you for listening!