The associations between shift work exposure and frailty among middle-aged and older adults at three years of follow-up

Results from the Canadian Longitudinal Study on Aging

Dr. Durdana Khan

MD (Pakistan), MPH (The Ohio State University, USA), PhD (York University, Canada)

The Association Between Shift Work Exposure and Frailty Among Middle-Aged and Older Adults

Results From the Canadian Longitudinal Study on Aging

Durdana Khan, MPH, MSc, Chris Verschoor, PhD, Heather Edgell, PhD, Michael Rotondi, PhD, and Hala Tamim, PhD

Objective: To investigate the association between shift work exposure and frailty. Methods: Longitudinal secondary data analyses were performed using Canadian Longitudinal Study on Aging. Individuals aged 45 to 85 years were included at baseline (N = 47,740). Primary shift work (SW) variables were derived at baseline: ever exposed to SW, SW exposure in longest job, and SW exposure in current job. Multinomial regression models were constructed to evaluate the association between SW and frailty at 3 years of follow-up. Results: Participants ever exposed to SW were associated with frailty compared with those who worked only daytime. Particularly, females worked in rotating shifts in their longest jobs were more likely to be classified as frail compared with those who worked only daytime. Conclusions: This study suggests that SW may play a role in development of frailty and this warrants further investigation.

Keywords: aging, CLSA, frailty, shift work, occupational health, night shift work, rotating shift work

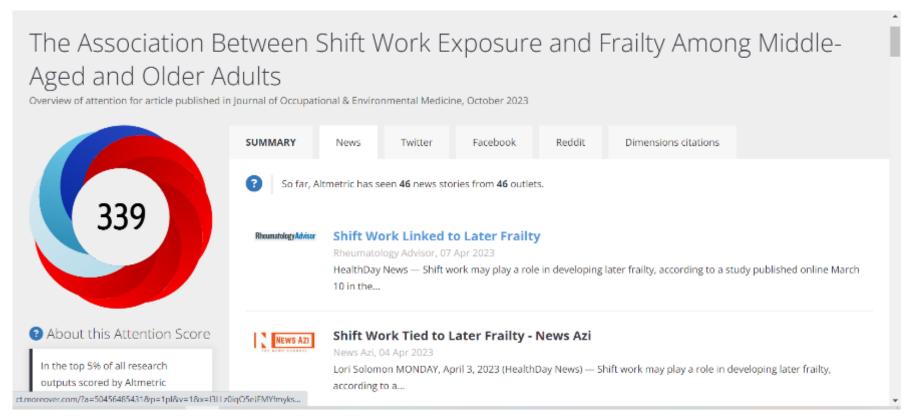
Frailty is a concept that is frequently used to describe elderly people who are more susceptible to morbidity and mortality and is gaining importance as a healthcare priority in countries with aging populations.

Closely linked to advanced age and disease-related processes, frailty is defined as a "medical syndrome with multiple causes and contributors that is characterized by diminished strength, endurance, and reduced physiologic function that increases an individual's vulnerability for developing increased dependency and/or death."

Late of the cannot be inferred from chronological age alone. Those who are frail are at increased risk of premature mortality, institutionalization, and worsening disability.
While frailty naturally occurs with age, previous literature have consistently shown that women are more likely to be frail than men of the same age.

And the strength of the same age.

CME Learning Objectives


After completing this enduring educational activity, the learner will be better able to:

- Investigate and outline the association between shift work exposure and frailty
- Asses the role of gender in the relationship between shift work exposure and proportion of frailty at three years of follow-up, among middle-aged and older age groups, utilizing Canadian Longitudinal Study on Aging
- Analyze the association between shift work exposure and proportion of frailty at three years of follow-up, among middle-aged and older adults, utilizing Canadian Longitudinal Study on Aging

healthy diet, ^{1,9} and sociodemographic factors such as poverty, educational level, marital status, ⁹⁻¹² and participation in social organizations. ^{13,14}

Shift work (SW), which involves any work outside the regular daytime hours, ^{15–17} may significantly contribute to the development of frailty. A complete range of SW includes the following: (1) evening shift, (2) night shift, (3) rotating shift (day to evening and/or night), and (4) other less specified shifts including on-call or casual shift (no prearranged schedule) and irregular shifts. ^{16,18–21} In recent years, SW has risen globally. A significant proportion of Canadian employees (28%) work outside the regular daytime hours. ^{16,17} Despite being a social and economic need, SW has a negative impact on the well-being of work force. Growing evidence suggest that a wide range of negative

46 news stories, Reddit stories

Shift work

- A globalized 24-hour society never shuts down
- Continuous services- security, emergency, production and supply

What is shift work (SW)?

"Any work outside the regular daytime hours (9am-5pm)" 1

A full spectrum of SW comprises:²

- Regular evening SW
 - > after 3 p.m., ending before midnight
- Regular night SW
 - > after 11 p.m., ending before 11 a.m.
- Rotating SW
 - day to evening and/or night
- On-call or casual shift (no pre-arranged schedule)
- Irregular shifts

Prevalence of Shift work^{1,3}

- One in every fourth Canadian is working in shifts other than regular daytime hours
- Two-third of protective service workers (police-officers, firefighters, and security guards)
- 45% of health workers,
- 40% of sales and service workers, and
- 42% of primary industry workers (i.e. farm workers, miners, forestry workers, etc.)

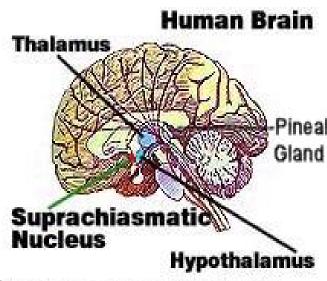
Shift work and short term effects

• Sleep disorders⁶

Accidents and work injuries ⁷

Mood disorders⁸

Possible long term health effects related to shift work

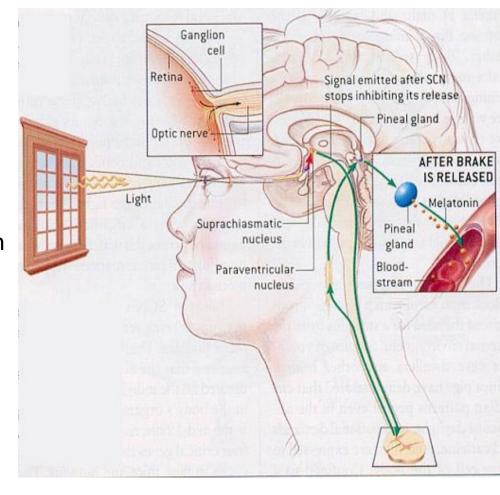

- Physical health
 - CVD⁹
 - Diabetes¹⁰
 - Peptic ulcers¹¹
 - Cancers¹²

Social health issues¹

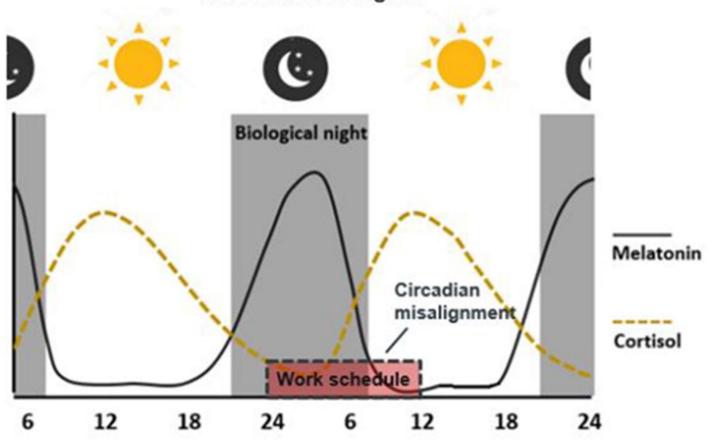
- Mental health
 - Depression¹³
 - Mood disorders⁸

How does the body work-**The circadian timing system (CTS)**⁴

- > Internal biological clock is located in the supra-chiasmatic nuclei in hypothalamus
- Internal and external factors synchronize us to a 24 hour day
- > Any interference in regular circadian rhythm could result in disturbed metabolic, hormonal The human internal clock is the and inflammatory responses



suprachiasmatic nuclei, located on each side of the hypothalamus.


Light/Dark Cycle

Exposure to light at night can reduce circulating melatonin levels⁵

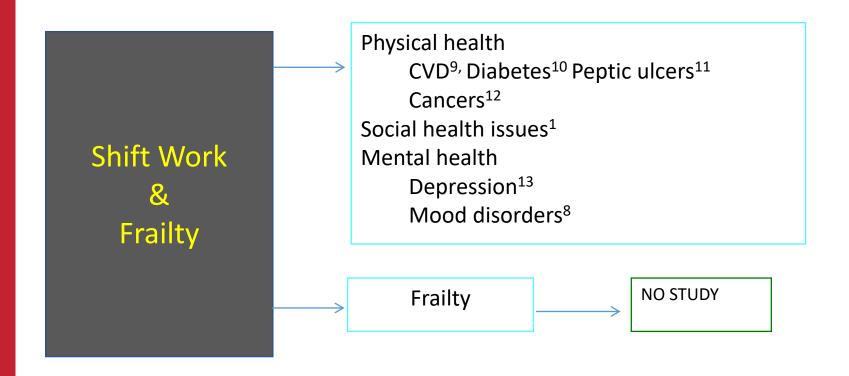
- ➤ If the light is bright, the levels can be completely suppressed
- Negative effects on health

Circadian rhythms of melatonin and cortisol Circadian misaligned

Behavioral factors

- Eating at irregular timings
- Low physical activity
- Higher incidence of smoking
- Higher intake of alcohol

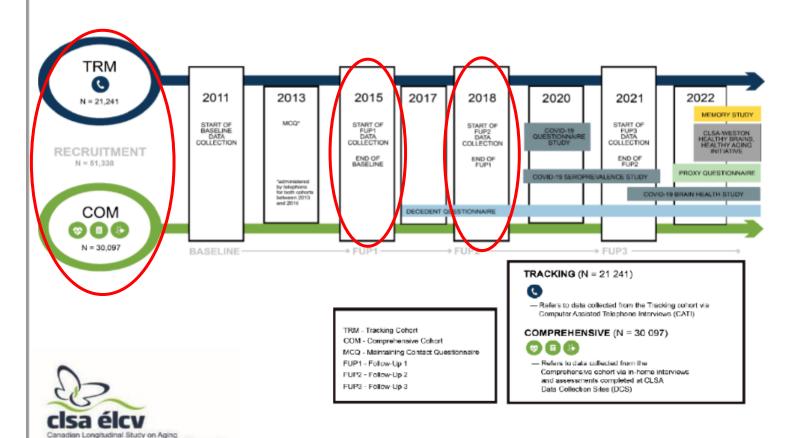
International Commission on Occupational Health


Founded in 1906 as Permanent Commission

Strong evidence linking shift work to CVD, gastrointestinal and metabolic disorders (type 2 diabetes; metabolic syndrome)

Less consistent evidence linking shift work to mental health problems and reproduction-related problems

Literature review SW and Frailty



Study objective

To investigate the associations between shift work exposure (SW) and Frailty among middle aged and older adults

Methodology

CLSA Data Collection

Étude longitudinale canadienne sur le vieillissement

CLSA inclusion criteria

Community dwelling

Cognitively healthy, and

Able to speak and understand English or French

CLSA exclusion criteria

 Being a resident of a federal First Nations reserve or other First Nations settlements in the provinces

Being a full-time member of the Canadian Armed Forces; and

Not a permanent resident or Canadian citizen, and

Individuals living in long-term care institutions (i.e., those providing 24-hour nursing care)

Primary Exposure Shift Work (SW)

CLSA Labour Force modules

Pre-retirement Labour force
Participation (LFP)

Retired participants

Currently working

Three primary SW exposures

SW variables	Categories			
1. Ever exposed to SW	Day time work (No) Reference group			
	Exposed to any SW (Yes)			
2. SW exposure in current job	Day time work(unexposed) Reference group Night SW Rotating SW			
3. SW exposure in longest job	Day time work(unexposed) Reference group Night SW Rotating SW			

Frailty

"Medical syndrome with multiple causes and contributors that is characterized by diminished strength, endurance, and reduced physiologic function that <u>increases an individual's vulnerability</u>

for developing increased dependency and/or death"

Clegg A, Young J, Iliffe S, Rikkert MO, Rockwood K. Frailty in elderly people. Lancet. 2013;381(9868):752-762. doi:10.1016/S0140-6736(12)62167-9

Frailty assessment

- Frailty index (FI)
 - Based on standard procedures (Accumulation of Deficits Model)
 - Recently applied by Pérez-Zepeda et al to create populationbased normative frailty values for Canada utilizing CLSA data base

Pooled data set

(Tracking+Comprehensive cohorts)

Self-rated health, vision and hearing (n=3)

Chronic conditions (n=30)

Activities of Daily Living (n=5)

Instrumental Activities of Daily Living (n=7)

Cognitive function (n=4)

Mental health (n=3)

52 items included

Frailty assessment

Total of 52 variables

Transformed into a 0 (no deficit) to 1 (deficit) scale

 Interval or ordinal variables with more than two responses were coded as a fraction of the complete deficit

Frailty assessment

To calculate each participant's FI score, we summed the deficits and divided that count by the total number of deficits measured, using the formula

$$FI = \frac{Number\ of\ deficits\ present\ on\ a\ determined\ individual}{Number\ of\ deficits\ measured\ for\ that\ individual}$$

Classification of Frailty

Continuous FI scores into the following categories

- Robust/non frail (FI \leq 0.10)
- Mild frail (FI > 0.10 to FI< 0.20) and
- Frail (FI ≥ 0.20)

Example

	Number of deficits present	Total number of deficits considered	Frailty Index (FI)	Frailty category
1	15	52	15/52=0.29	Frail
2	7	52	7/52=0.13	Mild frail
3	4	52	4/52=0.07	Robust/non-frail

Robust/non frail (FI \leq 0.10) Mild frail (FI > 0.10 to FI < 0.20) and Frail (FI \geq 0.20)

Study variables

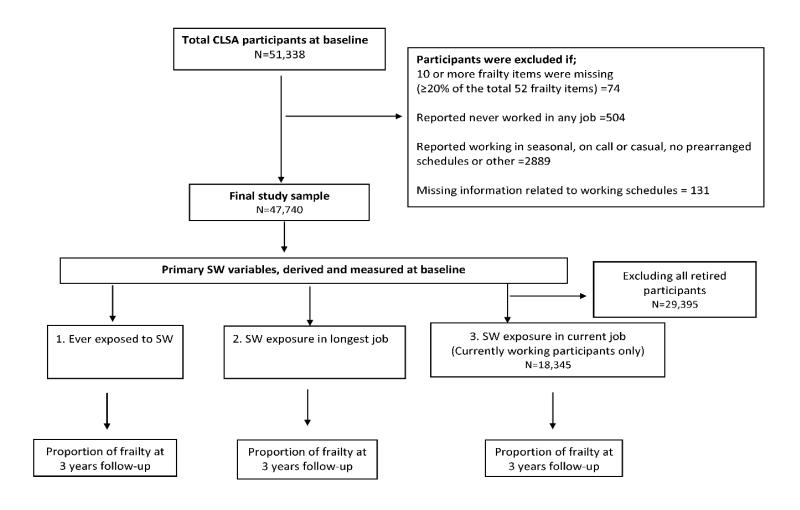
Independent variable

3 primary SW exposures

Dependent variable

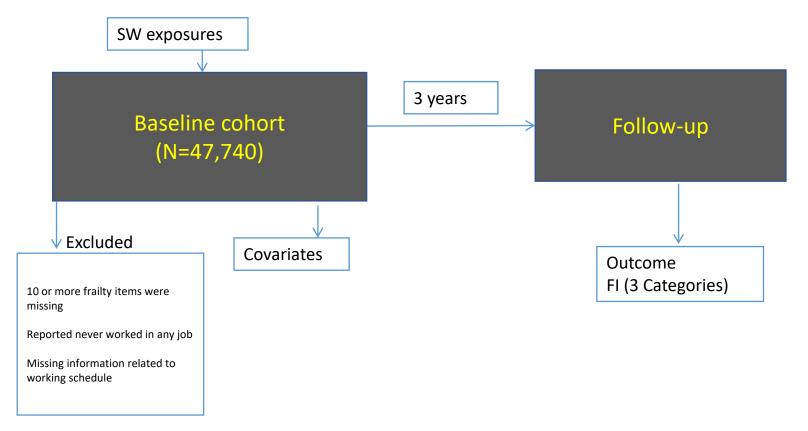
Accumulation of Deficits Model
52 variables utilized
Frailty Index (FI)

 $FI = \frac{\textit{Number of deficits present on a determined individual}}{\textit{Number of deficits measured for that individual}}$


3 Categories Robust/non frail (FI \leq 0.10) Mild frail (FI > 0.10 to FI< 0.20) and Frail (FI \geq 0.20)

Covariates

- Socio-demographic & life style factors


 Sex, age, ethnicity, marital status, education, household income; and major lifestyle factors such as smoking, alcohol intake, retirement status and baseline frailty
- Health related factors
 BMI
 - Reproductive factors

 Parity (number of pregnancies), history of hormone therapy, use of oral contraceptives, menopause classification

Methodology

Data source and study population

Study sample characteristics

- Mean age at baseline ———— 59.7 years (SD 10.15)
- Women 51.4%
- White ——> 95%

- Reported to be living with partners
- Having education of high school to some college level
- Former smokers
- Drinking at least weekly and
- Had household income 50,000 CAD and above

Over 50%

Study sample characteristics

• Ever exposed to SW ——— 21.1%

- Currently working population
 - 3.7% night SW
 - 11.6% rotating SW

- Longest job
 - 3.8% night SW
 - 15.6% rotating SW

Analysis

- Multinomial regression models stratified on sex
 - Three separate models were generated for three primary SW exposures
- Odds ratios (ORs) and 95% Confidence Interval (CIs)

- ORs greater than 1 ——— increase risk of frailty
- ORs less than 1 ————— decrease risk of frailty

Overall, at three years of follow-up

• 66.8% non frail/robust

26% as mild frail

• 7.2% as frail

Table 5: Adjusted multinomial regression longitudinal models, odds ratios (ORs) and 95% Confidence Intervals(CI) for proportion of frailty at 3 years follow-up

	Adjusted multinomial regression at 3 years follow-up					
Primary SW exposures	Male		Female			
	Mild frail OR ^{a,b} (95% CI)	Frail OR ^{a,b} (95% CI)	Mild frail OR ^{a,c} (95% CI)	Frail OR ^{a,c} (95% CI)		
Model 1 Ever exposed to SW						
Never exposed to SW (Daytime work only)	1.00	1.00	1.00	1.00		
Ever exposed to SW	1.05 (0.91-1.21)	1.30 (1.01-1.68)*	1.16 (1.01-1.34)*	1.41 (1.09-1.83)*		
Model 2 SW exposure in longest job						
Not exposed to SW (Daytime work only)	1.00	1.00	1.00	1.00		
Night SW	1.31 (0.93-1.86)	1.68 (0.95-2.97)	1.04 (0.77-1.40)	1.50 (0.92-2.45)		
Rotating SW	1.02 (0.88-1.18)	1.29 (0.98-1.72)	1.28 (1.09-1.51)*	1.55 (1.17-2.07)*		
Model 3 SW exposure in current job ^d						
Not exposed to SW (Daytime work only)	1.00	1.00	1.00	1.00		
Night SW	1.33 (0.78-2.30)	1.08 (0.28-4.20)	1.14 (0.70-1.86)	1.49 (0.56-4.03)		
Rotating SW	1.08 (0.82-1.43)	1.21 (0.62-2.62)	1.07 (0.82-1.40)	1.76 (0.87-3.61)		

^a The adjusted ORs and 95% CI were calculated using survey analytical weights.

b Models are adjusted for age, ethnicity, marital status, income, education, retirement status, baseline frailty, smoking, alcohol, BMI categories

^c Models are adjusted for age, ethnicity, marital status, income, education, retirement status, baseline frailty, smoking, alcohol, BMI categories, contraceptive use, parity, HRT, menopause classification

^d For current job, only those participants were included who reported currently working (not retired) at baseline (N=18,345)

^{*}P value < 0.05

Summarizing main findings

Ever exposed SW

increase risk of frailty at 3 years of follow-up

Rotating SW in longest job

increase risk of frailty at 3 years of follow-up

Current job

No significant associations

Patho-physiological basis of our findings

Impaired body levels of cortisol²⁵

Increase pro- and anti-inflammatory proteins ²⁴

Plasma tumor necrosis factoralpha (TNF-α)

Interleukin 10 (IL-10)

C-reactive protein (CRP)

Contribute to ongoing disease processes

Preliminary markers for occurrence of frailty

Patho-physiological basis of our findings^{27,28}

Sleep deprivation

Poor sleep quality

Melatonin due to light exposure

Contributing to development of frailty

Limitations

Unable to capture some SW related information,

- the type and direction of rotating shifts,
- number of consecutive night shifts worked, and
- the number of days off between shifts

- Unable to capture the exact timing of occurrence of the exposure
- Evening and night SW were pooled together
- Generalizability of our findings (ethnicity 95% white)

Strengths

- To our knowledge, it is the first study to investigate the associations between SW exposure and frailty
- Utilized large Canadian population based longitudinal data CLSA
- Current and retired Labour force data
- Both work schedules (night and rotating)
- Diverse group of Canadian workers
- CLSA questionnaire utilized standard measuring tools, compatible with other international surveys

Significance and conclusion

- Considering gender when addressing frailty and targeting interventions in old age
- Modifiable factors of frailty like SW exposure among working populations is of clinical relevance, will assist in extending healthy active life expectancy
- Designing SW schedules that are less disruptive to the circadian rhythms

Implications and future directions

- Education, counseling and health promotion
- Health surveillance and work-fitness evaluation
- Organization of shift scheduling
- Shift work regulations
- More research is needed with detailed information
 - Related to SW scheduling
 - Workplace and personal factors
 - Including extended follow-up periods

Acknowledgements

- Supervisor
 - Hala Tamim
- Committee members
 - Michael Rotondi
 - Heather Edgell
- Co-author Chris Verschoor
- CLSA team for providing data base and all required support

References

- 1. Williams C. Work-life balance of shift workers. Perspect Labour Income. 2008;9(8):5-16.
- 2. Institute for Work & Health. Co-workers play an important, but sometimes "invisible" role in RTW. 2010;(60):1,8. https://www.iwh.on.ca/sites/iwh/files/iwh/at-work/at_work/60.pdf.
- 3. CAREX. Night Shift Work Occupational Exposures. CAREX Canada. https://www.carexcanada.ca/profile/shiftwork-occupational-exposures/. Published 2019. Accessed February 18, 2020.
- 4. Arendt J. Shift work: Coping with the biological clock. Occup Med (Chic III). 2010;60(1):10-20. doi:10.1093/occmed/kqp162
- 5. Zeitzer JM, Dijk DJ, Kronauer RE, Brown EN, Czeisler CA. Sensitivity of the human circadian pacemaker to nocturnal light: Melatonin phase resetting and suppression. *J Physiol*. 2000;526(3):695-702. doi:10.1111/j.1469-7793.2000.00695.x
- 6. Åkerstedt T. Shift work and disturbed sleep/wakefulness. Occup Med (Chic III). 2003;53(2):89-94. doi:10.1093/occmed/kqg046
- 7. Wong IS, McLeod CB, Demers PA. Shift work trends and risk of work injury among Canadian workers. Scand J Work Environ Heal. 2011;37(1):54-61. doi:10.5271/sjweh.3124
- 8. Driesen K, Jansen NWH, Kant I, Mohren DCL, Van Amelsvoort LGPM. Depressed mood in the working population: Associations with work schedules and working hours. *Chronobiol Int*. 2010;27(5):1062-1079. doi:10.3109/07420528.2010.489877
- 9. Vyas M V., Garg AX, Iansavichus A V., et al. Shift work and vascular events: Systematic review and meta-analysis. *BMJ*. 2012;345(7871):e4800-e4800. doi:10.1136/bmj.e4800
- 10. Hansen AB, Stayner L, Hansen J, Andersen ZJ. Night shift work and incidence of diabetes in the Danish Nurse Cohort. *Occup Environ Med.* 2016;73(4):262-268. doi:10.1136/oemed-2015-103342
- 11. Knutsson A, Bøggild H. Gastrointestinal disorders among shift workers. Scand J Work Environ Heal. 2010;36(2):85-95. doi:10.5271/sjweh.2897
- 12. Wegrzyn LR, Tamimi RM, Rosner BA, et al. Rotating night-shift work and the risk of breast Cancer in the nurses' health studies. *Am J Epidemiol*. 2017;186(5):532-540. doi:10.1093/aje/kwx140
- 13. Lee A, Myung S-K, Cho JJ, Jung Y-J, Yoon JL, Kim MY. Night Shift Work and Risk of Depression: Meta-analysis of Observational Studies. *J Korean Med Sci.* 2017;32(7):1091. doi:10.3346/jkms.2017.32.7.1091
- 14. Gamble KL, Resuehr D, Johnson CH. Shift work and circadian dysregulation of reproduction. Front Endocrinol (Lausanne). 2013;4:92. Published 2013 Aug 7. doi:10.3389/fendo.2013.00092
- 15. Stock D, Knight JA, Raboud J, et al. Rotating night shift work and menopausal age. Hum Reprod. 2019;34(3):539-548. doi:10.1093/humrep/dey390
- 16. Brzezinski A. Melatonin in humans. N Engl J Med. 1997;336(3):186-195.
- 17. Okatani Y, Sagara Y. Amplification of nocturnal melatonin secretion in women with functional secondary amenorrhoea: Relation to endogenous oestrogen concentration. Obstet Gynecol Surv. 1995;50(8):601-603. doi:10.1097/00006254-199508000-00018
- 18. SHERMAN BM, WEST JH, KORENMAN SG. The menopausal transition: analysis of LH, FSH, estradiol, and progesterone concentrations during menstrual cycles of older women. J Clin Endocrinol Metab. 1976;42(4):629-636.
- 19. Santoro N, Brown JR, Adel T, Skurnick JH. Characterization of reproductive hormonal dynamics in the perimenopause. J Clin Endocrinol Metab. 1996;81(4):1495-1501.

References

- 20. Arlinghaus A, Bohle P, Iskra-Golec I, Jansen N, Jay S, Rotenberg L. Working time society consensus statements: Evidence-based effects of shift work and non-standard working hours on workers, family and community. Ind Health. 2019;57(2):184-200. doi:10.2486/indhealth.SW-4
- 21. Gold EB. The Timing of the Age at Which Natural Menopause Occurs. Obstet Gynecol Clin North Am. 2011;38(3):425-440. doi:10.1016/j.ogc.2011.05.002
- 22. Sherman BM, West JH, Korenman SG. The menopausal transition: Analysis of LH, FSH, estradiol, and progesterone concentrations during menstrual cycles of older women. J Clin Endocrinol Metab. 1976;42(4):629-636. doi:10.1210/jcem-42-4-629
- 23. Brzezinski A. Melatonin in humans. N Engl J Med. 1997;336(3):186-195.
- 24. Wright KP, Drake AL, Frey DJ, et al. Influence of sleep deprivation and circadian misalignment on cortisol, inflammatory markers, and cytokine balance. Brain Behav Immun. 2015;47:24-34. doi:10.1016/j.bbi.2015.01.004
- 25. Harris A, Waage S, Ursin H, Hansen ÅM, Bjorvatn B, Eriksen HR. Cortisol, reaction time test and health among offshore shift workers. Psychoneuroendocrinology. 2010;35(9):1339-1347. doi:10.1016/j.psyneuen.2010.03.006
- 26. Srinivasan V, Pandi-Perumal SR, Maestroni GJM, Esquifino AI, Hardeland R, Cardinali DP. Role of melatonin in neurodegenerative diseases. Neurotox Res [Internet]. 2005;7(4):293–318. Available from: https://doi.org/10.1007/BF03033887
- 27. Guida JL, Alfini AJ, Gallicchio L, Spira AP, Caporaso NE, Green PA. Association of objectively measured sleep with frailty and 5-year mortality in community-dwelling older adults. Sleep. 2021;44(7):1-9. doi:10.1093/sleep/zsab003
- 28. Ensrud KE, Blackwell TL, Redline S, et al. Sleep disturbances and frailty status in older community-dwelling men. J Am Geriatr Soc. 2009;57(11):2085-2093. doi:10.1111/j.1532-5415.2009.02490.x

Thank you

Questions?