The Canadian Longitudinal Study on Aging:
Understanding the complexity of aging through interdisciplinary research

Susan Kirkland, PhD
Department of Community Health and Epidemiology
Dalhousie University

Hallman Visiting Professor
Waterloo, May 2007
Outline

- Conceptual framework
- Study design
- Content
- Process
- Progress
- Challenges
- Opportunities
The aging of an academic: Development of the CLSA

- **Phase I**
 - Feasibility Studies
 - 2001-2003

- **Phase II**
 - Validation, Pilot
 - 2004-2005

- CFI
 - 2006

- CF
 - 2007-2008

Protocol Development
- 2001-2003

CLSA ELCV
The Canadian Longitudinal Study on Aging (CLSA)

- A key component of the Canadian Lifelong Health Initiative, a strategic initiative of CIHR
 - The Canadian National Birth Cohort
 - The Canadian Longitudinal Study on Aging

- 3 principal investigators, more than 160 researchers from 26 institutions

- Multidisciplinary - biology, genetics, medicine, psychology, sociology, demography, economics, epidemiology, nursing, nutrition, health services, biostatistics, population health
Rationale for CLSA

- Aging of Canadian population
- Longer life expectancies
- Baby boomers begin turning 65 in 2011
- Different needs, expectations
- Implications for health care system, social programs
- Need for evidence based decision making
- Generation of new knowledge
CLSA Research Team

- 3 Principal Investigators
 - Susan Kirkland, Dalhousie University
 - Parminder Raina, McMaster University
 - Christina Wolfson, McGill University

- 4 Senior Advisors

- 3 Institutional Advisors

- 13 Theme Leaders/ Key Co-Investigators

- 200 Collaborators

Representing 26 institutions in 10 provinces
Overall Aims of the CLSA

- To examine aging as a dynamic process.
- To investigate the inter-relationship among intrinsic and extrinsic factors from mid life to older age.
- To capture the transitions, trajectories and profiles of aging.
- To provide infrastructure and build capacity for sustained high quality research on aging in Canada.
CLSA Conceptual Framework

- Healthy aging
- Lifecourse approach
- Determinants of health
- Continuum of micro to macro levels
- Gene-environment interactions
- Dynamic and changing face of Canadians
CLSA Timeline

- **Phase I Feasibility Studies**: 2003
- **Phase II Validation, Pilot**: 2006
- **CFI**: 2006
- **CF**: 2008

Timeline:
- 2001
- 2002
- 2003
- 2004
- 2005
- 2006
- 2007
- 2008
CLSA Protocol Development

- Development on multiple fronts
- Concurrent, iterative
 - Conceptual framework
 - Study design
 - Research questions
 - Study domains, content
Review of 70 longitudinal studies on aging worldwide

- Majority study people over the age of 65; very few look at the aging process from mid-life to old age

- Many collect information on social factors or retirement but lack detailed information on physical health, or vice versa

- Very few capture the changing individual within a changing context and incorporate multiple levels of inquiry: the cell, the individual and society

- Very limited intersection between biology, clinical, and psychosocial dimensions of aging

- Very few focus on how individuals cope or adapt to changing circumstances and how it impacts their well-being
Aging research in the genomics era

- Development of large scale biobank studies
- Gene-gene interactions, gene-environment interactions
- Study of quantitative traits (continuous endpoints)
- Antecedents of disease/systems markers of aging:
 - eg serum cholesterol, vital capacity, systolic blood pressure
- Longitudinal study of gene-environment interaction throughout the lifespan
Conceptual framework: Models of healthy/successful aging

Literature dominated by two models:

Rowe and Kahn

• Differentiates successful aging from usual aging
• Based on the assumption that successful agers engage in behaviours that modify risk factors to allow them to meet a high degree of physical, mental and social functioning

Baltes and Baltes

• Selection, optimization, compensation
• Based on the assumption that decline is an inevitable part of aging, and that successful agers are those who engage in processes that help them to adapt to change in order to meet their own goals
A conceptual model for the CLSA

- Central tenet that aging is multi-dimensional
- Chose to use the term “healthy aging”
- Recognize that there are many different ways that an individual can age
- Establish a framework to incorporate multiple elements to guide our thinking
CLSA Model of Aging

CONTEXTUAL ADAPTATION

<table>
<thead>
<tr>
<th>Contextual Level Predictors</th>
<th>Example: Physician Supply</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Contextual Level Predictors</th>
<th>Example: Social Programs</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Contextual Level Predictors</th>
<th>Example: Housing</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Contextual Level Predictors</th>
<th>Example: Ageism</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Physical Functioning</th>
<th>Indicators: e.g. Disability</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Psycho-cognitive Functioning</th>
<th>Indicators: e.g. Memory</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Social Functioning</th>
<th>Indicators: e.g. Social contacts</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Perceived Well-Being</th>
<th>Indicators: e.g. Sense of Control</th>
</tr>
</thead>
</table>

INDIVIDUAL ADAPTATION

<table>
<thead>
<tr>
<th>Individual Level Predictors</th>
<th>Example: Chronic disease</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Individual Level Predictors</th>
<th>Example: Fluid intelligence</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Individual Level Predictors</th>
<th>Example: Education</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Individual Level Predictors</th>
<th>Example: Optimism</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Indicators</th>
<th>e.g.</th>
</tr>
</thead>
</table>
- Mid life to old age
- Quantitative traits
 - Physical
 - Social
 - Psychological
- Gene-environment interactions
- Disease, disability, psychosocial consequences
- Adaptation
CLSA Cohort Assembly

- Representative sample of Canadian population
 - Stratified by age, sex, province

- Options for sampling frame:
 - National: Census (2006), CCHS
 - Provincial: Health insurance files, enumeration records, telephone directories
CLSA Architecture

- Data collection on 50,000 (at 10 sites)
- Inception Cohort: 50,000
- Questionnaires, Database linkage
- Follow-up over 20 years

Every 3 years age 40-79; Every year age 80+
Overview of the CLSA

50,000 women and men aged 40 - 84 at entry

20,000
Randomly selected within Province/Territories

30,000
Randomly selected within 100 km of an academic centre in 10 sites

Questionnaire
• By telephone

Questionnaire
• In person and telephone

Clinical/physical tests
Neuropsych tests
Blood, urine

Follow up every 3 years to age 79; every year age 80+
Interim contact yearly to age 79; every 6 months age 80+
Questionnaire

<table>
<thead>
<tr>
<th>Content</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Demographics</td>
<td>Age, sex, education, occupation, income, employment, wealth, pension, housing, ethnicity, household, family, transportation</td>
</tr>
<tr>
<td>Psychology</td>
<td>Cognitive function, everyday competence, adaptive functioning, coping, personality, emotion, psychological distress, values, pain</td>
</tr>
<tr>
<td>Social</td>
<td>Social networks, social support, work and retirement, participation, stability and change of place, structural inequalities</td>
</tr>
<tr>
<td>Health Services</td>
<td>Services, medications, informal supports complementary therapies, assistive devices, health care access, costs, continuity of care</td>
</tr>
<tr>
<td>Health Status</td>
<td>Quality of life, oral health, arthritis, diabetes, hypertension, communication, hearing, frailty, injuries, vision, chronic diseases</td>
</tr>
<tr>
<td>Lifestyle</td>
<td>Alcohol, exercise, leisure activities, diet, nutrition, vitamin and mineral supplements, smoking, sleep, weight history</td>
</tr>
</tbody>
</table>

2.5 hrs
In person follow up (30,000)

Protocol at Data Collection Sites

<table>
<thead>
<tr>
<th>Component</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Face to face Interview</td>
<td>75 min</td>
</tr>
<tr>
<td>Neuropsych Testing</td>
<td>20 min</td>
</tr>
<tr>
<td>Physical/clinical</td>
<td>80 min</td>
</tr>
<tr>
<td>TOTAL</td>
<td>175 min ~3 hrs</td>
</tr>
</tbody>
</table>

+ Blood, urine collection 30 min

+ OGTT 2 hrs
Methodological Challenges

- **Population subgroups**
 - Geography: remote, urban/rural
 - Residence: community dwelling, institutional
 - Ethnicity: ethnic minorities, immigrants, aboriginal population

- **Sample size calculations**
 - Multiple endpoints
 - Multiple analytic approaches

- **Attrition**
 - Simulations using age specific mortality, loss to FU in NPHS

- **Missing Data**
 - Partial, wave
 - Imputation, re-weighting

- **Responder burden**
 - Vary modules according to age, sex
 - Embedded substudies
 - Participant engagement
CLSA Content Development

- Expert working groups responsible for development of theme-specific content
- 30 minutes per working group as a guide
- Domains, research questions, predictors, outcomes, measures
- Guiding principles for content development: longitudinal, niche, aging
Interdisciplinary Research Agenda

Methods

Policy

Sociology

Psychology

HSR

Biology/genetics

Clinical

Lifestyle
Research Questions

- Overarching research questions
- Working group-specific research questions
- Individual level research questions
- Precursors, quantitative traits, consequences
Example Research Questions: Cognition as a Quantitative Trait

Cognition as a precursor:

- Is decline in cognitive functioning (memory, executive function and psychomotor speed) in mid and later life associated with subsequent adverse health related (or biological) outcomes?

- Is decline in cognition (memory, executive function and psychomotor speed) in mid and later life associated with changes in social participation?
Example Research Questions: Cognition as a Quantitative Trait

- How do individuals with cognitive change adapt to maintain performance in everyday functioning?

- Are general lifestyle activities (e.g. physical activities, social activities, domestic activities, community service, etc) associated with cognitive functioning and/or change in cognition over time after adjustment for sensory impairment?
Example Research Questions: Cognition as a Quantitative Trait

Cognition as a mediator
- How do cognitive functions mediate or moderate relations between biological/physical status and adaptive functioning and/or social participation?

Cognition as an outcome
- Are changes over time in cognition (memory, executive function and psychomotor speed) associated with specific biological states?
<table>
<thead>
<tr>
<th>Precursors</th>
<th>Quantitative Trait</th>
<th>Consequences</th>
</tr>
</thead>
<tbody>
<tr>
<td>Physical activity</td>
<td>COGNITION</td>
<td>Dementias</td>
</tr>
<tr>
<td>Medication use</td>
<td>Memory</td>
<td>Depression</td>
</tr>
<tr>
<td>Education</td>
<td>Intelligence</td>
<td>Social engagement</td>
</tr>
<tr>
<td>Sleep</td>
<td>Exec function</td>
<td>Quality of life</td>
</tr>
<tr>
<td>Self esteem</td>
<td>Psychomotor</td>
<td>Institutionalization</td>
</tr>
<tr>
<td>Head trauma</td>
<td></td>
<td>Cargiving</td>
</tr>
<tr>
<td>Hypertension</td>
<td></td>
<td>Injuries</td>
</tr>
<tr>
<td>Societal role exp</td>
<td></td>
<td>Work/occupation</td>
</tr>
<tr>
<td>Genes (APOE)</td>
<td></td>
<td>Abuse</td>
</tr>
</tbody>
</table>
Research Domains

<table>
<thead>
<tr>
<th>Social</th>
<th>Psychological</th>
<th>Physical</th>
</tr>
</thead>
<tbody>
<tr>
<td>Social networks</td>
<td>Cognition</td>
<td>General health</td>
</tr>
<tr>
<td>Social support</td>
<td>Personality</td>
<td>Functional health</td>
</tr>
<tr>
<td>Social participation</td>
<td>Emotion/mood</td>
<td>Disability</td>
</tr>
<tr>
<td>Work</td>
<td>Depression</td>
<td>Chronic diseases</td>
</tr>
<tr>
<td>Retirement</td>
<td>Adaptive functioning</td>
<td>Oral health</td>
</tr>
<tr>
<td>Income and wealth</td>
<td>Lifestyle</td>
<td>Arthritis</td>
</tr>
<tr>
<td>Education</td>
<td>Physical activity</td>
<td>Medication use</td>
</tr>
<tr>
<td>Housing</td>
<td>Food consumption</td>
<td>Biological</td>
</tr>
<tr>
<td>Demographics</td>
<td>Alcohol</td>
<td>Biochemical markers</td>
</tr>
<tr>
<td>Health services</td>
<td>Smoking</td>
<td>Genetics</td>
</tr>
<tr>
<td></td>
<td>Weight/obesity</td>
<td></td>
</tr>
</tbody>
</table>
Trajectories of Aging

Dimensions of functional health

Changes in the hierarchy of components

Threshold for dysfunctional health

Observed at 65

Observed at 75

Approach is unlikely to be effective.

Source: Ferrucci L, The Paradigm of Biological Homeostasis, Universitat de Vic, June 16, 2005
CLSA Timeline

- Protocol Development
- Phase I: Feasibility Studies
- Phase II: Validation, Pilot
- CFI
- CF
Purpose of Feasibility Studies

- Assess logistics of proposed study design and its implementation
- Designed to be informative to the development of any large-scale, longitudinal study involving in-depth data collection
- Directly applicable to the CLSA
- Used to inform further refinement of the protocol
Participant Recruitment and Retention Studies

<table>
<thead>
<tr>
<th>Study 1:</th>
<th>Views of Canadians towards participation in a longitudinal, population-based study</th>
</tr>
</thead>
<tbody>
<tr>
<td>Study 2:</td>
<td>Test consent to release coordinates of participants in the CCHS</td>
</tr>
<tr>
<td>Study 3:</td>
<td>Identification of the optimal consent process</td>
</tr>
<tr>
<td>Study 4:</td>
<td>Identification of possible alternative sample frames</td>
</tr>
<tr>
<td>Study 5:</td>
<td>Screening tools to assess capacity to consent to observational research</td>
</tr>
<tr>
<td>Study 6:</td>
<td>Development of optimal process for the baseline interview</td>
</tr>
</tbody>
</table>
Data Collection and Data Flow Studies

Study 7: Feasibility of proposed blood and urine sample collection/shipping/storage and analysis strategies

Study 8: Strategies to enhance data linkage with health care utilization data bases and disease registries

Study 9: Development and evaluation of disease identification algorithms

Study 10: Issues related to the return of clinical information to study participants and/or general practitioners

Study 11: Assessment of logistics of data collection methods, data transfer and security
Views of Canadians

Methods

- Focus groups conducted in six Canadian cities: Vancouver, Calgary, Winnipeg, Hamilton, Montreal, Halifax

Key Findings

- Healthy aging considered important, timely
- Universities trusted to carry out the study; government to fund
- Private companies should not profit from the study
- Providing blood and urine samples adds credibility
- Trust that confidentiality will be protected
- Concerns around the use of DNA
 - Information not be shared with third parties
 - Why needed, how would it be used, who would have access
- Altruism is a key motivator for most participants
Key Messages

- **Willing to help others, but want to know that findings are put to use**

 “So any kind of study that will boost…health and people’s situation in life, you can’t help but do something good as long as it’s not stuck in the shelf somewhere when it’s done.”

- **Want to feel appreciated contributing to something worthwhile**

 “…basically your primary reason for doing it would be to help others. So if they come back and say, hey, what you’ve done has helped in this way, that would be kind of nice, yeah.”

 “…it’d be nice once in a while to get a phone call or a letter in the mail that said this was done, this was great, you know, updates; wouldn’t have to be a monthly newsletter, but a once a year newsletter type of thing…”

- **Expect some kind of feedback on own health status**

 “…that could very well be one of the benefits, to have more information, more broader information, more precise information about your own and your family’s health.”
CCHS as CLSA sample frame

Statistics Canada’s Canadian Community Health Survey (CCHS) identified as a survey vehicle that could provide a sample frame for the recruitment of a representative sample of the Canadian population.

Objectives

- Determine the willingness of CCHS participants to share personal coordinates (contact information) with CLSA
- Determine the willingness of CCHS participants to share survey responses with CLSA

Methods

- Additional CLSA content added to the activities of the CCHS 3.1 Pilot Test
Results by Sex, Age, Location

Share Contact Info

<table>
<thead>
<tr>
<th></th>
<th>M</th>
<th>F</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Share</td>
<td>64.7%</td>
<td>62.8%</td>
<td>63.8%</td>
</tr>
<tr>
<td>Survey</td>
<td>75.3%</td>
<td>76.4%</td>
<td>75.8%</td>
</tr>
</tbody>
</table>

Share Survey Data

<table>
<thead>
<tr>
<th></th>
<th>40-54</th>
<th>55-64</th>
<th>65-74</th>
<th>75+</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Share</td>
<td>63.9%</td>
<td>76.8%</td>
<td>46.7%</td>
<td>55.3%</td>
<td>63.8%</td>
</tr>
<tr>
<td>CCHS</td>
<td>73.7%</td>
<td>86.6%</td>
<td>64.4%</td>
<td>73.7%</td>
<td>75.8%</td>
</tr>
</tbody>
</table>

Vancouver, Montreal, Halifax

<table>
<thead>
<tr>
<th></th>
<th>Vancouver</th>
<th>Montreal</th>
<th>Halifax</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Share Contact</td>
<td>44.2%</td>
<td>78.1%</td>
<td>69.7%</td>
<td>63.8%</td>
</tr>
<tr>
<td>Info</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Share CCHS</td>
<td>62.5%</td>
<td>90.5%</td>
<td>74.2%</td>
<td>75.8%</td>
</tr>
<tr>
<td>Info</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: 77% signed consent
Consent to Release Coordinates

Consider...

n=429 100% of eligible sample
n=319 74.1% of those eligible agreed to participate in CCHS
n=298 94.9% of those who agreed to participate in CCHS agreed to share their data with the MOH
n=229 77% of those who agreed to share with MOH signed consent to share contact info, share data with CLSA

Therefore… 53% of those originally eligible agreed to share contact info
Objectives
- Examine barriers and facilitators to accessing and linking with health care utilization databases
- Develop best practice guidelines for use of and access to health care utilization data

Methods
- Telephone interviews conducted with P/T Data Stewards (n=20) and P/T Information Privacy Commissioners / Ombudsmen (n=13)
Key Findings

- Standard approach in all jurisdictions does not exist
- Informed consent: study questions, data accessed, for how long, where stored, how used, who has access, periodic re-consent
- Data access agreement: Provincial/territorial MOH
- Privacy Impact Assessment
- Provincial privacy legislation AND health information legislation is constantly evolving
- Lack of standardization of variables, coding, completeness, updating
- Requires extensive “up front” work with data stewards, managers
- Complex process, but possible
Blood and Urine Sample Collection, Shipping, and Storage Strategies

Objectives

- Document the infrastructure of existing laboratory services
- Compare the feasibility, logistics and cost of collecting specimens in private community-based and hospital-based clinical laboratories
- Assess the ability to accommodate study participants, execute standardized protocols

Methods

- At each site and lab type, participants randomized to:
 - Collection of 93mL of (fasting) blood and a urine specimen OR
 - Collection of 93mL of (fasting) blood and a urine specimen AND Oral Glucose Tolerance Test (OGTT)
Methods

- Participants recruited by family physicians in Vancouver, Hamilton, Montreal
- Processing time approximately 1 hour, to be conducted within a 2 hour window
- Frozen, stored, shipped to central location in batches
- Evaluated for volume, number of aliquots per tube, evidence of hemolysis, labelling errors
Specimen Processing for the **Canadian Longitudinal Study on Aging: Biological Specimen Collection Feasibility Study**

First Centrifugation: 1500xg (3000 rpm) for 15 minutes

- Carefully draw plasma off cells in each tube and transfer plasma to cryovial
- For each tube, carefully draw plasma off cells and transfer evenly between two cryovials
- Transfer plasma evenly into each cryovial
- Transfer plasma to cryovial

After removal of plasma, carefully draw white cells into fresh pipette and transfer to cryovial

Second Centrifugation: 1500xg (3000 rpm) for 15 minutes

- Transfer serum from each tube evenly into 2 (5 mL) polystyrene tubes
- Transfer plasma evenly into two cryovials

Recap tubes set aside for second centrifugation

Allow to clot at room temperature for ~30 minutes

- Pipette 0.5 mL blood into tube
- Pipette 0.5 mL blood into each cryovial
- Pipette 1.5 mL urine into cryovial

All cryovials and tubes on the pale blue fields must be placed in the freezer boxes provided and frozen within 2 hours of collection. Collection tubes and the 2nd Centrifuge Tube are to be discarded after completion of processing.

* For Grey tube labeled, processing is identical; plasma is transferred to cryovial labeled.
Key Findings

- Not all provinces have private labs
- Instability in private sector
- Considerable variation in capacity among private labs and hospital labs
- Reasons for declining participation: current demands, space and time constraints, complex, demanding protocol
- Average lab charges per participant: $144 (range $66 to $270) in hospital labs and $254 (range $96 to $535) in private lab settings
- Withdrawal rate 22%
- Participant satisfaction high
Return of Clinical Information

Objective

To explore the issues involved in returning individual clinical rest results to research participants and/or their family physicians.

Methods

- Internet survey of 68 relevant longitudinal studies.
- Focus groups to explore potential participants’ views of the importance, the type of information they would like to receive, and how they would like to receive it.
- Telephone interviews with PIs of 13 longitudinal studies.
Return of Clinical Information

<table>
<thead>
<tr>
<th>Type of measure</th>
<th>Collected</th>
<th>Returned if collected</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anthropomorphic measures</td>
<td>85%</td>
<td>35%</td>
</tr>
<tr>
<td>Functional ability</td>
<td>50%</td>
<td>20%</td>
</tr>
<tr>
<td>Neuropsych exam</td>
<td>45%</td>
<td>33%</td>
</tr>
<tr>
<td>Blood pressure</td>
<td>75%</td>
<td>63%</td>
</tr>
<tr>
<td>EKG</td>
<td>65%</td>
<td>75%</td>
</tr>
<tr>
<td>Advanced clinical tests</td>
<td>22%</td>
<td>83%</td>
</tr>
<tr>
<td>Vision</td>
<td>32%</td>
<td>63%</td>
</tr>
<tr>
<td>Hearing</td>
<td>42%</td>
<td>67%</td>
</tr>
<tr>
<td>Oral health</td>
<td>10%</td>
<td>50%</td>
</tr>
<tr>
<td>Blood biomarkers</td>
<td>70%</td>
<td>79%</td>
</tr>
<tr>
<td>Urine biomarkers</td>
<td>45%</td>
<td>44%</td>
</tr>
<tr>
<td>Biosample for genetics</td>
<td>60%</td>
<td>0%</td>
</tr>
</tbody>
</table>
Key Findings: Survey

- Majority of studies returned some individualized information to study participants

- Ethical considerations identified as most important factor in deciding whether or not to return results

- 75% of respondents recommended return of individualized test results; 25% recommended no return

- Reasons in favour of returning individualized results: ethical considerations, participant retention, benefits to participants

- Reasons against returning individualized results: ethical considerations, tests not done in clinical settings, reliability too low, results not readily interpretable
Key Findings: Focus Groups

- Participants well-informed health care consumers
- Strong perceived onus on health studies to return individual results, especially adverse findings
- Participants overwhelmingly want their own individual results or want their physician to have them
- No expectation of interpretation or counseling
- Return of results seen as a benefit of participation and an incentive to continue
- Focus group perceptions and expectations around the return of individual test results mirrors an emerging trend among researchers and funding bodies
Ethical and Legal Issues

- Informed consent
 - For 20 year duration
 - For storage of biological samples, clinical, questionnaire based information
 - Genetic and biochemical testing
 - Products from biological samples: cell lines
 - For unspecified research projects in the future

- Harmonization across provinces
 - Ethical approval from multiple REBs

- Privacy laws regarding use and disclosure of personal information across provinces
Ethical, Legal, Societal Issues (ELSI)

- Lawyers
- Ethicists
- Philosophers
- Geneticists
- Epidemiologists
- Social scientists
- Privacy commissioner
Informed Consent

I have read the Information Package for the Canadian Longitudinal Study on Aging. yes ☐ no ☐

I understand the information I have read about the Canadian Longitudinal Study on Aging. yes ☐ no ☐

I agree to participate in the Canadian Longitudinal Study on Aging. I understand this involves completing questionnaires, and having physical measures conducted at study centres. yes ☐ no ☐

I agree to collection of biological samples. yes ☐ no ☐

I understand biological samples and information about me will be stored for 20 years and even longer for studies related to human health in the aging process. yes ☐ no ☐

I agree to linkage of information collected from me with databases held by public institutions. yes ☐ no ☐

I agree that results of routine clinical tests will be mailed to me. yes ☐ no ☐

I understand that attending a study centre for physical measures testing does not replace a visit to my doctor or other health care provider. yes ☐ no ☐

I have had time to decide whether to participate in the Canadian Longitudinal Study on Aging. I have had a chance to ask questions about the Study. I understand that even though I have consented to some or all of the items on this form, I can still withdraw from participating in the Study at any time.

Name: Name of witness:
Signature: Signature:
Date:
CLSA Timeline

2001 2002 2003 2004 2005 2006 2007 2008

- Protocol Development
- Phase I Feasibility Studies
- Phase II Validation, Pilot
- CFI
- CF
Phase II Development Activities

- Refine, validate content and measures
- Priority setting, identification of gaps, overlaps
- Protocols, standard operating procedures for data collection & storage, data analysis plan
- Collaboration, harmonization with national, international studies
- Development of SC CCHS 4.2 survey on aging
- Comprehensive dress rehearsal
- Partnerships with community organizations, seniors, practitioners, policy makers, & private sector
Infrastructure: Core Network of Facilities

Manage and Coordinate; Timelines; Develop Protocols, Procedures; Training & Documentation

Operations Data / Measures / Analyses

Interim Follow Up

Operations Data

Operations

Operational Support

Operations Data

Operations

Operations Data

Operations

National Coordinating Centre

McMaster University
Canadian Cohort Network

Large cohorts in development stages - CIHR
- Canadian National Birth Cohort
- Asthma/Allergy Birth Cohort
- Cancer/chronic disease cohort
- Multi-generational cohort

Large population based research studies
- Canadian Multicentre Osteoporosis Study (CaMos)
- Prospective Urban and Rural Epidemiology Study (PURE)
- Epidream
- Panel Study of Lifecourse Dynamics (PSLD)
Improved Life-long Healthcare for Canadians

COHORT STUDIES
Expertise in specific areas of child health, aging and chronic disease.

COMMON RESEARCH PLATFORMS
Common infrastructure enabling data collection, management and analysis.

OUTCOMES
Population Genomics

Epidream Metabolic Syndrome

FAMILY Obesity

CLSA Healthy Aging and Function

CHILD Asthma/Allergy

PURE Cardiovascular

OCIR Cancer

BioBanking

CATI Centres

National Coordinating Centre

Data Collection Centres

Data Repository & Statistical Centre

Environmental and Remote Sensing Lab

Population Genomics

Data Management

Improved Life-long Healthcare for Canadians

Outcomes
Challenges

- Caught between strategic initiative and investigator driven project
- Political environment
- Scientific environment
- Large team dynamics, communication
- Funding

- Personal (academic) costs
Opportunities

- Key population health issue
- Platform for research on aging for the broad research community
- Opportunity for capacity building, attracting new researchers
- “Big Science” initiative for Canada
- Personal (academic) growth
International Links

- Womens Health and Aging Study - USA
- Aging & Sexuality - USA
- HRS - USA
- British Birth Cohort - UK
- UK Biobank - UK
- ELSA - UK
- ALSPAC - UK
- Cohorte Constances - FRANCE
- LASA - Amsterdam
- ILSA - Italy
- InChianti - Italy
CLSA
launch date:
2008
Acknowledgements

CLSA Research Staff: Geoff Strople, Camille Bullock, Steven Dukeshire, Olga Kits, Karen Szala-Meneok, Homa Keshavarz, Judy Keys, Jennifer Uniat, Linda Furlini

CLSA Research Team: 200 Co-Investigators at 26 Canadian institutions

Funding: CIHR, FRSQ

Email: Susan.Kirkland@dal.ca
CLSA@epid.jgh.mcgill.ca
Website: www.CLSA-ELCV.ca