Canadian Longitudinal Study on Aging: A Multi-disciplinary Platform for Health Sciences Research

Chris Verschoor, MSc, PhD
Assistant Professor, Dept. of Pathology and Molecular Medicine
McMaster Institute of Research on Aging
Faculty of Health Sciences
McMaster University, Hamilton, ON

University of Guelph, HHNS
September 19th, 2016
A need to study aging adults:

The population is getting older

Source: Elections Canada

1. Medium-growth scenario.

Source: Statistics Canada, CANSIM tables 051-0001 and 052-0005.
A need to study aging adults:

Health-care costs rise with age...

Source: CIHR
A need to study aging adults: ... because we don’t get any healthier

Can we prevent age-related disease? Can we live forever?

THE KEY: understand the demographic, biological, psychosocial and economic factors that influence “healthy aging”

THE PROBLEM: $$$$$
The Canadian Longitudinal Study on Aging (CLSA)

• Strategic initiative of CIHR; on Canadian research agenda since 2001
• A platform to provide the infrastructure and build capacity for state-of-the-art, interdisciplinary, population-based research and for evidence-based decision making needed to support the nation as it transitions into several decades of rapid population aging.

Raina et al., 2009: Can J Aging
The Canadian Longitudinal Study on Aging (CLSA)

• More than 160 researchers and collaborators – 26 institutions
• Multidisciplinary – biology, genetics, medicine, psychology, sociology, demography, economics, epidemiology, nutrition, health services
• Largest research platform of its kind in Canada for breadth and depth
• Following 50,000+ Canadians aged 45-85 at baseline for 20 years
Study Design and Timeline

Participants aged 45 to 85 at baseline (51,000+)

Enrolled

Tracking Cohort (n=20,000)
Age: 45-54 55-64 65-74 75-85
n: 6,000 6,000 4,000 4,000
(Telephone interviews)

Comprehensive Cohort (n=30,000)
Age: 45-54 55-64 65-74 75-85
n: 9,000 9,000 6,000 6,000
(In-person interviews and physical/biological assessments)

Data and Biological Sample Repositories

Active follow-up (FU) every 3 years

- Questionnaire
- Physical assessments
- Biological specimens
- Health-care utilization
- Disease registries
- Mortality databases

TIME: 20 Years

2010 - 2015

2015 2018
Data preview portal

https://datapreview.clsa-elcv.ca/datasets
Interview data

HEALTH INFORMATION
- Chronic disease symptoms (11 chronic conditions)
- Medication and supplement intake & compliance
- Women’s health (menopause and HRT)
- Self-reported health service use
- Oral health
- Administrative data linkage health services, drugs and other administrative databases (CIHI, ICES)

PSYCHOSOCIAL
- Social participation
- Social networks and support
- Caregiving and care receiving
- Mood, psychological distress
- PTSD
- Injuries and consumer products
- Work-to-retirement transitions
- Personality traits
- Retirement planning
- Social inequalities
- Mobility-lifespace
- Built environments and contextual factors
- Income, wealth and assets

LIFESTYLE & SOCIODEMOGRAPHIC
- Smoking and Alcohol consumption
- Physical activity (PASE)
- Nutrition (nutrition risk and food frequency)
- Ethnicity/race/gender
- Birth location
- Marital status
- Education
Interview data: Physical activity and nutrition

• PASE: Physical Activity Scale for the Elderly
 – Used to assess activities commonly engaged in by older persons
 – Correlates with age, sex, socioeconomic status, major conditions, functioning capacity, environment
 – Over 100 questions pertaining to types and duration of physical activity

• Nutritional risk (SCREEN II)
 – Used to identify risk for impaired nutritional states in community-living older adults
 – 11 questions pertaining to weight loss/gain, meals consumed, and eating

• Short food frequency Diet Questionnaire (SDQ)
 – a food frequency questionnaire designed to measure intake of total fat, fatty acids, cholesterol, trans fat, dietary fibre, calcium and vitamin D, and servings of fruits and vegetables.
 – Consists of 30 food and six beverage items, and consumption frequency (day, month, week, year)
Interview data: Chronic diseases, injuries and infections

• Falls (types, causes, injuries and other outcomes)
• Circulatory (Age of: CVA, angina, heart attack, hypertension, CVD, etc)
• Diabetes (Type, age begun insulin, other medications)
• Infections (In the past year: Flu/Pneumo, UTI, Eye/Ear, “other”)
• Cancers
• Arthritis (rheumatoid, osteoarthritis (Age, location and complications))
• Mental and neurological (anxiety, depression (age of), Parkinson’s (drugs and symptoms), dementia)
• Pulmonary (Asthma, COPD/emphysema, drugs taken)
• Allergies
Comprehensive Disease Ascertainment Algorithms

• Self-reported disease status can be inaccurate
 • Hypertension (κ=0.72), Diabetes (κ=0.82)
 • Asthma (κ=0.66), Depression (κ=0.40)
• Accurate clinical diagnosis is not realistic in a large epidemiological study
Comprehensive Disease Ascertainment Algorithms

- Algorithms have been developed that will utilize multiple data sources to diagnose disease.

- Performed for the following...

<table>
<thead>
<tr>
<th>Diabetes</th>
<th>Hypertension</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chronic Airflow Obstruction</td>
<td>Depression</td>
</tr>
<tr>
<td>Parkinsonism</td>
<td>Hyper/Hypothyroidism</td>
</tr>
<tr>
<td>Ischemic Heart Disease (Hand, Hip, Knee)</td>
<td>Osteoarthritis</td>
</tr>
<tr>
<td>Stroke</td>
<td>Osteoporosis</td>
</tr>
<tr>
<td>Dementia</td>
<td></td>
</tr>
</tbody>
</table>

- Release dependant on data used
Data Collection Sites
Physical and cognitive assessments and biospecimen collection
DCS: Physical and cognitive assessments

PHYSICAL ASSESSMENTS
- Height, Weight, BMI, Waist-to-hip ratio
- Bone Density (hip, spine, whole body), Body Composition, Aortic Calcification, Vertebral fractures (Hologic DXA)
- Lean muscle mass (Hologic DXA)
- Blood Pressure and heart rate (BpTRU)
- Electrocardiogram (MAC 1600)
- Carotid Intimal-Medial Thickness (GE Vivid Doppler ultrasound)
- Pulmonary Function (Easy on-PC spirometer)
- Vision (Chart, IOP, retinal imaging)
- Hearing (Tremetrics RA 300+)

PERFORMANCE TESTING
- Timed to get up and go
- Chair rise
- 4 metre walk
- Grip strength (Tracker Freedom Dynamometer)
- Standing balance test

COGNITIVE ASSESSMENTS
- Neuropsychological Battery
 - Memory
 - Executive function
 - Reaction time
DCS: Biospecimen collection

- 50 mL blood
- Urine sample
- Hematological tests completed on site
- Remainder frozen, within 2 hours
- Stored in 0.5ml matrix tubes in LN2.
DCS: Hematological analysis

White blood cells
Lymphocytes (absolute and relative number)
Monocyt (absolute and relative number)
Granulocytes (absolute and relative number)

Red blood cells
• Hemoglobin
• Hematocrit
• Mean corpuscular volume
• Mean corpuscular hemoglobin
• Mean corpuscular hemoglobin concentration
• Red blood cell distribution width

Platelets
• Mean platelet volume
First Follow-Up: New Content

- Child maltreatment
- Elder abuse
- Epilepsy
- Arterial stiffness
- Decedent information
- Transition to institutions
- Unmet health-care needs
- Workability
- Preventive health behaviours
- Enhanced hearing, oral health and transportation
- Sexual orientation and gender identity
- Subjective cognitive decline
- Loneliness
Coming soon: (More) Biomarker data
Expected release in 2017-2018

Comprehensive Cohort
(n=30,000)

Soluble Markers
Calgary Laboratory Services
(n=30,000)
- Albumin
- Alanine Aminotransferase
- C-Reactive Protein, High Sensitivity
- Creatinine, serum
- Total Cholesterol, HDL Cholesterol, Calculated LDL Cholesterol, Triglycerides
- Ferritin

Genome-wide Genotyping
McGill University and Génome Québec Innovation Centre
(n=10,000)
- Buffy coat DNA extracted on all 30,000
- Genotyping by the ~820K UK Biobank Axiom Array (Affymetrix)
- Imputation (~6 million SNPs) performed by Brent Richards (McGill University)

Metabolomics (n=3,000)
- Performed on participant serum in Japan using a mass spectrometry approach

DNA Methylation Profiling
UBC Genetics and Epigenetics Centre
(n=2,000)
- Performed in the laboratory of Dr. Michael Kobor, UBC
- PBMCs used for DNA extraction
- Profiling by 850K Infinium MethylationEPIC BeadChip (Illumina)

~2,000 participants with matching soluble, genetic, epigenetic and metabolomic marker data
Data and Biospecimen Access

- Fundamental tenets:
 - The rights, privacy and consent of participants must be protected and respected at all times
 - The confidentiality and security of data and biospecimens must be safeguarded at all times
 - CLSA data and biospecimens are resources that will be used optimally to support research to benefit all Canadians
 - No preferential or exclusive access
Data preview portal

https://datapreview.clsa-elcv.ca/datasets

DataPreview Portal

SMART TIPS
- Variables from all Baseline interviews are preselected by default. To limit your search, select/deselect each under the 'Dataset' tab on the left
- Search for Areas of Information or Scales using the search bar below
- For Variable Names and Labels, use the search fields under the 'Variable' tab
- When searching multiple terms, default search mode is (OR). To switch to (AND), use the Advanced option

Variable Dataset

Variable properties
- Name
- Label

Areas of Information

Clear CMQ | COM | TMCQ | TRM

Variables (210) Datasets (2)

<table>
<thead>
<tr>
<th>Name</th>
<th>Label</th>
<th>Dataset</th>
</tr>
</thead>
<tbody>
<tr>
<td>PA2_CRPRS0N_MCOQ</td>
<td>PASE scale: Engaged in caring for another person - past 7 days</td>
<td>TMCQ</td>
</tr>
<tr>
<td>PA2_CRPRS0N_MCOQ</td>
<td>PASE scale: Engaged in caring for another person - past 7 days</td>
<td>CMCO</td>
</tr>
</tbody>
</table>

Also… CLSA Protocol

https://clsa-elcv.ca/doc/511
Who can apply?

• Researchers based in academic settings and research institutes in Canada

• International researchers may choose to collaborate with Canadian researchers to access data or biospecimens as long as the data and/or biospecimens are analyzed in Canada

• Graduate students and postdoctoral fellows based at Canadian institutions
Preparing an Application
https://www.clsa-elcv.ca/data-access

Complete the Data and/or Biospecimen Request Application
• Includes a 3 page proposal outlining the study background/relevance, objectives and hypotheses, design and methodology, and the data analyses proposed.
• Identifiable information will not be shared (e.g. six-digit postal codes, names, contact information).

For more information
• Consult the Data and Sample Access Policy and Guiding Principles
• Review the pertinent sections of the CLSA protocol and the CLSA questionnaires
• Visit the DataPreview Portal to search datasets
Review & Data Access Process

- **Submit**: March, June and October for review May, July and November
- **Review**: Administrative → Data and Sample Access Committee → Scientific Management Team
- **Approval**: Preparation of CLSA Access Agreement, verification of ethics approval
- **Release**: Raw data provided to approved investigator, cost recovery
- **Enhance**: Return of derived variables to CLSA dataset as appropriate

Queries should be sent to access@clsa-elcv.ca
Data and Biospecimen Access Fees

• Partial cost-recovery model
• $3,000 for a straightforward alphanumeric dataset for any number of participants
• Additional fees applied for requests that require more complex customization
• No cost for graduate students who use these data for their Master’s or PhD theses
• One free dataset for postdoctoral fellows
• Baseline biospecimen and biomarkers data release is expected soon, fees are still being determined (Questions? bbc@clsa-elcv.ca)
My Current Research Areas

Past and Present

- Grip strength
- Timed-to-up-and-go
- Gait speed
- Exhaustion
- Weight loss

Biomarkers (cellular + molecular)

Robust Pre-frail Frail

Peripheral blood cells

1) Grip strength
2) Timed-to-up-and-go
3) Gait speed
4) Exhaustion
5) Weight loss
Biorepository and Bioanalysis Centre (BBC)

- Central location for storage and analysis of the biological samples
 - 31 nitrogen freezers (-190°C)
 - Storage for 5 million aliquots
 - Dry storage, humidity controlled, room temperature

- Director: Dr. Cynthia Balion, McMaster University
The CLSA Laboratory

Current Work

Flow Cytometry

Automated liquid handler (Gerobot)

Tissue culture facilities

Plate reader/
spectrophotometer

Plate washer

Luminex 200

Flow Cytometry

Current Work

Flow Cytometry
CLSA Research Team

UVic: Debra Sheets, Lynne Young, Holly Tuokko
UBC: Teresa Liu-Ambrose, Michael Kobor, Max Cynader
SFU: Andrew Wister, Scott Lear
UCalgary: David Hogan, Marc Poulin, Eric Smith, Alex Chin, Hossein Sadrzadeh
UManitoba: Verena Menec, Phil St. John
McMaster: Parminder Raina, Cynthia Balion, Lauren Griffith, Andrew Costa, Harry Shannon, Christopher Patterson, Michael Veall, Guillaume Paré, Brenda Vrkljan, Dawn Bowdish, Stu Phillips, Maureen MacDonald, Andrea Gonzalez, Harriet MacMillan, Byron Spencer, Chris Verschoor
UOttawa: Vanessa Taler, Larry Chambers
McGill: Christina Wolfson, Ron Postuma, Brent Richards, Mark Lathrop
USherbrooke: Hélène Payette, Benoît Cossette
Dalhousie: Susan Kirkland
Memorial: Gerry Mugford, Patrick Parfrey
UToronto: Andrew Paterson
UWaterloo: Mark Oremus, Mary Thompson, Changbao Wu
Eindhoven University of Technology: Edwin van den Heuvel
Thanks! Any Questions?

Transforming Everyday Life into Extraordinary Ideas

www.clsa-elcv.ca
Contact Information

Chris Verschoor, cversch@mcmaster.ca

Data access? access@clsa-elcv.ca
Biospecimen access? bbc@clsa-elcv.ca

Connect with us

info@clsa-elcv.ca
www.clса-elcv.ca
The difficulty in studying trends of health and disease in community-dwelling adults

An ideal study should be:
- Representative – capture population heterogeneity
- Sufficiently powered (n)
- Cost-effective

Important considerations:
- Target(s)
- Effect size
- Prevalence or variability of target(s)
- Follow-up period

An inconvenient truth…

“Go Big or Go Home”

Wouldn’t it be great if there was a national platform to support this type of work!
Population Totals in Canada by Age Group and Year

<table>
<thead>
<tr>
<th>AGE</th>
<th>MALES</th>
<th>BOTH SEXES</th>
<th>FEMALES</th>
</tr>
</thead>
<tbody>
<tr>
<td>80+</td>
<td>229898</td>
<td>670192</td>
<td>440294</td>
</tr>
<tr>
<td>75-79</td>
<td>255599</td>
<td>622194</td>
<td>366595</td>
</tr>
<tr>
<td>70-74</td>
<td>364298</td>
<td>833991</td>
<td>469693</td>
</tr>
<tr>
<td>65-69</td>
<td>497996</td>
<td>1084588</td>
<td>586592</td>
</tr>
<tr>
<td>60-64</td>
<td>578596</td>
<td>1190087</td>
<td>611491</td>
</tr>
<tr>
<td>55-59</td>
<td>618096</td>
<td>1233837</td>
<td>620291</td>
</tr>
<tr>
<td>50-54</td>
<td>673295</td>
<td>1339986</td>
<td>666691</td>
</tr>
<tr>
<td>45-49</td>
<td>844194</td>
<td>1674182</td>
<td>829988</td>
</tr>
<tr>
<td>40-44</td>
<td>1076892</td>
<td>2138777</td>
<td>1061885</td>
</tr>
<tr>
<td>35-39</td>
<td>1173491</td>
<td>2344675</td>
<td>1171184</td>
</tr>
<tr>
<td>30-34</td>
<td>1311991</td>
<td>2597873</td>
<td>1285882</td>
</tr>
<tr>
<td>25-29</td>
<td>1282190</td>
<td>2528572</td>
<td>1246382</td>
</tr>
<tr>
<td>20-24</td>
<td>1067593</td>
<td>2108978</td>
<td>1041385</td>
</tr>
<tr>
<td>15-19</td>
<td>984993</td>
<td>1925780</td>
<td>940787</td>
</tr>
<tr>
<td>10-14</td>
<td>980292</td>
<td>1912979</td>
<td>932687</td>
</tr>
<tr>
<td>5-9</td>
<td>998293</td>
<td>1953079</td>
<td>954786</td>
</tr>
<tr>
<td>0-4</td>
<td>1000393</td>
<td>1953280</td>
<td>952887</td>
</tr>
<tr>
<td>1991 TOTALS</td>
<td>13938100</td>
<td>28117600</td>
<td>14179500</td>
</tr>
</tbody>
</table>
First Follow-Up: Additional Considerations

- Changing circumstances
 - Moving
 - Cognitive impairment
 - Physical impairment
 - Sensory impairment
 - Institutionalization

- Accommodation strategies to maintain long-term participation
- Allows for flexible participation
- Baseline exclusion criteria no longer apply
The CLSA Laboratory: Current Projects

• Validating the use of cryopreserved whole blood for cellular immunophenotyping by multicolour flow cytometry.

Not feasible for large studies

Costly, Requires trained personnel

Cost-effective, Simple to prepare
Validating the use of cryopreserved whole blood for cellular immunophenotyping by multicolour flow cytometry

Testing: Total WBCs, Monocytes, Neutrophils, CD4/CD8 Lymphocytes, B-cells, NK cells, NKT cells, pDCs, Basophils

CD4 T-lymphocyte Frequency

- Fresh vs. Frozen Whole Blood
- Frozen Whole Blood vs. Frozen PBMCs
- Frozen/Frozen Whole Blood vs. CBC
Examining the relationship between blood biomarkers and frailty in older adults

- Approved by the CLSA Scientific Management Team and Data and Sample Access Committee, June 2016.

- **Hypothesis:** The frequency and phenotype of peripheral blood cells can discriminate individuals classified as healthy (robust), pre-frail and frail, although this relationship will depend on important demographics such as age, sex and socioeconomic status.