How to take a sample of Canadians; and how we’re doing it in the Canadian Longitudinal Study on Aging

Lauren Griffith
Harry Shannon
McMaster University

CEB Rounds
15 February 2012
Outline of presentation

• Background on sampling
• Participants in the CLSA
• Sampling approaches in the CLSA
• CCHS participants
• Sampling from provincial health registries
• Principles of Random Digit Dialing
• Issues with RDD
• Conclusion
Principles of sampling

• Population vs Sample
• Want representative sample of some target population
• Need every member of the population to have non-zero probability of being sampled
• Must be able to estimate the probability of sampling any unit chosen
Simple random sampling

• All units in target population are known
• Sample is chosen randomly
• Each unit has an equal probability of being chosen
• Units may be individual, households, ...
Simple random sampling

- Unit sampled
- Unit not sampled
More complex designs

- Stratification
- Clustering
- Multi-stage
- Combinations
Stratified random sampling

- Population of interest is divided into strata (e.g., male and female; young, middle-aged, old)
- Simple random sample is chosen from each stratum
- Probabilities of selection between the strata can vary
- May be more cost-efficient than simple random sampling
Stratified random sampling

- Unit sampled
- Unit not sampled
Calculations in stratified sampling using weights

<table>
<thead>
<tr>
<th>Stratum</th>
<th>Population</th>
<th>Sample</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N</td>
<td># with disease</td>
</tr>
<tr>
<td>1</td>
<td>5000</td>
<td>500</td>
</tr>
<tr>
<td>2</td>
<td>2000</td>
<td>400</td>
</tr>
<tr>
<td>Total</td>
<td>7000</td>
<td>900</td>
</tr>
</tbody>
</table>
Calculation of weights in stratified sampling

<table>
<thead>
<tr>
<th>Stratum</th>
<th>Population</th>
<th>Sample</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N</td>
<td># with disease</td>
</tr>
<tr>
<td>1</td>
<td>5000</td>
<td>500</td>
</tr>
<tr>
<td>2</td>
<td>2000</td>
<td>400</td>
</tr>
<tr>
<td>Total</td>
<td>7000</td>
<td>900</td>
</tr>
</tbody>
</table>
Calculation of weights in stratified sampling

<table>
<thead>
<tr>
<th>Stratum</th>
<th>Population</th>
<th>Sample</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N</td>
<td># with disease</td>
</tr>
<tr>
<td>1</td>
<td>5000</td>
<td>500</td>
</tr>
<tr>
<td>2</td>
<td>2000</td>
<td>400</td>
</tr>
<tr>
<td>Total</td>
<td>7000</td>
<td>900</td>
</tr>
</tbody>
</table>
Calculation of weights

<table>
<thead>
<tr>
<th>Stratum</th>
<th>Population</th>
<th></th>
<th></th>
<th>Sample</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N</td>
<td># with disease</td>
<td>Proportion</td>
<td>Fraction sampled</td>
<td>n</td>
<td># with disease</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>5000</td>
<td>500</td>
<td>0.1</td>
<td>0.04</td>
<td>200</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>2000</td>
<td>400</td>
<td>0.2</td>
<td>0.1</td>
<td>200</td>
<td>43</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>7000</td>
<td>900</td>
<td>0.13</td>
<td>0.06</td>
<td>400</td>
<td>59</td>
<td></td>
</tr>
</tbody>
</table>

Weight, \(w = \frac{1}{\text{P(selected)}} \)

Stratum 1: \(w_i = \frac{1}{0.04} = 25 \)

Stratum 2: \(w_i = \frac{1}{0.1} = 10 \)
Estimation of number in population with disease

• Label $X_i = 0$ if the disease is absent and 1 if it’s present for person i

• The our estimate of the number of people with the disease in the population is
 $$\sum (w_i X_i)$$

• And the estimate of the proportion in the population with the disease is
 $$\frac{\sum (w_i X_i)}{\sum w_i}$$
Application to our numerical example

<table>
<thead>
<tr>
<th>Stratum</th>
<th>Population</th>
<th>Sample</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N</td>
<td># with disease</td>
</tr>
<tr>
<td>1</td>
<td>5000</td>
<td>500</td>
</tr>
<tr>
<td>2</td>
<td>2000</td>
<td>400</td>
</tr>
<tr>
<td>Total</td>
<td>7000</td>
<td>900</td>
</tr>
</tbody>
</table>

For Stratum 1, there are 16 people with $X_i = 1$
and 184 people with $X_i = 0$
The weight for each person is 25
Do the same for stratum 2.

Then $\Sigma (w_iX_i) = 830$ is our estimate of the number with the disease
Application to our numerical example

<table>
<thead>
<tr>
<th>Stratum</th>
<th>Population</th>
<th>Sample</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N # with disease Proportion</td>
<td>Fraction sampled n # with disease</td>
</tr>
<tr>
<td>1</td>
<td>5000 500 0.1</td>
<td>0.04 200 16</td>
</tr>
<tr>
<td>2</td>
<td>2000 400 0.2</td>
<td>0.1 200 43</td>
</tr>
<tr>
<td>Total</td>
<td>7000 900 0.13</td>
<td>0.06 400 59</td>
</tr>
</tbody>
</table>

Estimate of the population proportion with disease

\[
= \frac{\sum (w_i X_i)}{\sum w_i} \\
= \frac{830}{7000} \\
= 0.12
\]

There are formulae to estimate the variance of the proportion.
And we can do this for continuous (interval) data.
Cluster sampling

• For efficiency, one may sample people within certain groups

• Examples:
 – sample towns and then sample people or households within each town
 – Sample households and interview everyone in household
Cluster sampling

- Unit (cluster) sampled
- Unit not sampled
- Individual sampled
- Individual not sampled
Cluster sampling

• Must allow for the lack of independence in the sampling – e.g., people in same family have similar diet
• Effective reduction in sample size, related to the ‘intra-cluster correlation’
• Trade-off between cost of sampling at random and need to sample more units (e.g., people) in total
Sampling in difficult situations

- E.g., disaster areas, war zones, Low Income Countries
- Various alternative methods
- E.g., Extended Program on Immunization (EPI)
- Methods typically have some limitations
- May have to balance bias, precision, speed, cost

Back to CLSA ...
Aims of sampling in CLSA

• Choose representative sample of eligible Canadian residents
Inception Cohort: 50,000, re-contacted every 3 years

Follow-up over 20 years

Ages 45-85 at baseline, re-contacted every 3 years

CLSA Participant Recruitment
CLSA Data Collection

Potential Participants Sent Study Information → Participants Consent to Participate in CLSA → Participants Provide Questionnaire Data (n=50,000)

Biological Data
- Blood
- Urine

Physical/Psychological Data
- Neuropsychological Battery
- Performance Testing
- Anthropometric Measures
- Bone Density, Body Composition
- Aortic Calcification
- ECG
- Carotid Intimal-Medial Thickness
- Pulmonary Function
- Vision and Hearing

n=30,000 Home Interview → n=20,000 Telephone Interview

Stored in Biobank (BBC) and Biomarker analysis → Stored in (NCC/SAC) → Questionnaire Data Processed
Canadian Longitudinal Study on Aging

CLSA Tracking
(n=20,000)

45-54 55-64 65-74 75-85
↓ ↓ ↓ ↓
6,000 6,000 4,000 4,000

CLSA Comprehensive
(n=30,000)

45-54 55-64 65-74 75-85
↓ ↓ ↓ ↓
9,000 9,000 6,000 6,000
Potential Sampling Frames

• Canadian Community Health Survey Participants
• Provincial Health Registration Databases
• Random Digit Dialling

ALL OF THE ABOVE
• CCHS provided first part of sample
• Options for methods of selection of remaining participants:
 – Using provincial health registries - *preferred*
 – Random digit dialing
• In several provinces, we cannot use registries, so need to do RDD
Recruitment from the CCHS

• CLSA collaborated with Statistics Canada to develop the CCHS Healthy Aging Questionnaire
• **Target population**: People aged 45 and over living in private occupied dwellings in the ten provinces
• **Excluded**:
 • Residents of the three territories
 • Persons living on Indian reserves or Crown lands
 • Persons living in institutions
 • Full-time members of the Canadian Forces
 • Residents of some remote regions
Recruitment from the CCHS, *ctd*.

Multi-stage sampling

- Sampling frame 2006 Census
- Selection
 - Clusters based on Census dissemination area blocks
 - Dwellings within cluster
 - Person within dwelling
- Response Rate
 - Household-level 80.8%
 - Person-level 92.1%
 - Overall 74.4%
Recruitment from the CCHS, *ctd.*

Participants were asked to share:

- Their contact information with the CLSA (for recruitment)
- Their survey responses with the CLSA (for analysis)

12,269 (47%) of Eligible Participants provided Contact Information to CLSA

Contact + Survey
- N=11,742

Contact Only
- N=527

Survey Only
- N=8,345

Neither
- N=5,634

- N=30,865
- N=26,248
- N=4,617
Recruitment from the CCHS, *ctd.*

<table>
<thead>
<tr>
<th></th>
<th>Canadian Longitudinal Study on Aging</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Sampling Frame: CCHS, provincial health registration databases, and RDD</td>
</tr>
<tr>
<td></td>
<td>Sampling Frame: provincial health registration databases, and RDD</td>
</tr>
<tr>
<td></td>
<td>CLSA Tracking (n=20,000)</td>
</tr>
<tr>
<td></td>
<td>CLSA Comprehensive (n=30,000)</td>
</tr>
<tr>
<td>45-54</td>
<td>617</td>
</tr>
<tr>
<td>55-64</td>
<td>1,704</td>
</tr>
<tr>
<td>65-74</td>
<td>1,350</td>
</tr>
<tr>
<td>75-85</td>
<td>791</td>
</tr>
<tr>
<td>CCHS</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>45-54</td>
<td>9,000</td>
</tr>
<tr>
<td>55-64</td>
<td>9,000</td>
</tr>
<tr>
<td>65-74</td>
<td>6,000</td>
</tr>
<tr>
<td>75-85</td>
<td>6,000</td>
</tr>
<tr>
<td>Remainder</td>
<td>5,383</td>
</tr>
<tr>
<td></td>
<td>4,296</td>
</tr>
<tr>
<td></td>
<td>2,650</td>
</tr>
<tr>
<td></td>
<td>3,209</td>
</tr>
</tbody>
</table>
Recruitment from Provincial health registration databases

• 2005
 – Feasibility study to explore practical, methodological and ethical aspects of accessing Health Care Utilization data from Provincial databases (published 2009)

• 2009-2011
 – Several meetings with Provincial Data Stewards and Privacy Commissioners to negotiate access to health registration databases for sampling
MOH Mailout
- Letter(s) from MOH and/or CLSA
- Brochure, IP
- Consent to contact form
 + Postcard reminder in 20 days

Participant returns consent to contact form

NCC
- Assigns unique ID
- Sends:
 - Participant consent form
 - Additional study materials if requested

Participant contacted

CATI
- Assess eligibility
- Answers participant questions

Participant interested and ready

CATI
- Participant consent†
- Conducts telephone interview
- Collects Provincial Health Number (if participant provides consent)

Participant interested but not ready

CATI
- Schedule Interview
Recruitment from Provincial health registration databases

• Based on previous studies (completed in early 2000’s) we anticipated a 15-20% recruitment rate

• Preliminary results from PEI and New Brunswick suggest that the recruitment rate may be lower ~7-10%
RDD – Tracking + Telephone Administered Questionnaires Pilot

<table>
<thead>
<tr>
<th>Module</th>
<th>Mean Age (SD)</th>
<th>Language</th>
<th>Sex</th>
</tr>
</thead>
<tbody>
<tr>
<td>Injury Module (n=200)</td>
<td>70.5 y (11.2 y)</td>
<td>Fr=100</td>
<td>F=92</td>
</tr>
<tr>
<td></td>
<td></td>
<td>En=100</td>
<td>M=108</td>
</tr>
<tr>
<td>Tracking Baseline (n=50)</td>
<td>64.3 y (10.6 y)</td>
<td>Fr=23</td>
<td>F=33</td>
</tr>
<tr>
<td></td>
<td></td>
<td>En=27</td>
<td>M=17</td>
</tr>
<tr>
<td>Maintaining Contact - Comp (n=25)</td>
<td>61.3 y (9.0 y)</td>
<td>Fr=12</td>
<td>F=12</td>
</tr>
<tr>
<td></td>
<td></td>
<td>En=13</td>
<td>M=13</td>
</tr>
<tr>
<td>Maintaining Contact - Tracking (n=25)</td>
<td>63.1 y (10.0 y)</td>
<td>Fr=15</td>
<td>F=13</td>
</tr>
<tr>
<td></td>
<td></td>
<td>En=10</td>
<td>M=12</td>
</tr>
<tr>
<td>TOTAL (n=300)</td>
<td>62.7 y (10.8 y)</td>
<td>Fr=150</td>
<td>F=150</td>
</tr>
<tr>
<td></td>
<td></td>
<td>En=150</td>
<td>M=150</td>
</tr>
</tbody>
</table>
RDD – Comprehensive Pilot

Recruitment of participants who agreed to be contacted by CLSA n=131

Hamilton: n=66
Mean Age = 65.0 y (11.0 y)
Language = En
Female = 33; male = 32
45 Completed Interviews

Montreal: n=65
Mean Age = 65.0 y (12.0 y)
Language = Fr
Female = 32; male = 33
41 Completed Interviews
Original Plan for Additional Recruitment

P=Provincial Health Registration Databases
R=RDD Only
H=Hybrid: RDD then Provincial Health Registration Databases
Plan for Additional Recruitment

R=RDD Only
H=Hybrid: RDD then Provincial Health Registration Databases
RDD approach

- In principle, idea is simple
- Randomly sample numbers as far as possible in specified area codes and with next 3 digits in relevant area
- Identify eligible people at each number
- Randomly choose one person
- Recruit willing participants until ‘quota’ filled
Issues in using RDD

- Identifying numbers in specified area
- Having up-to-date list of numbers for target population
- Ability to compute sample weights
- Presence of landlines and/or cellphones
- Eligibility within household – changes over time
- Method of initial contact
- Households without phones
- Numbers may be businesses, out of order, etc.
- People away from home (snowbirds, etc.)
Cell phones and landlines

• Statistics Canada survey December 2010
• Supplement to Labour Force Survey
• Households using cell phones exclusively:
 – Overall: 13%
 – Age 18-34 50%
 – Over 35 8%
 – Over 55 4%
• Increasing over time
• Landlines reach nearly all our eligibles
Combining samples from cell phones and landlines

- Methods have been described
- Need to determine all phones in each household
- Keep logs of unfilled quotas (age-sex numbers)
- Interviewers construct rosters of eligibles within households and randomly choose one
Some issues with cell phones

• Ethical: incoming calls may cost user; privacy; activity when answering (driving, etc); children
• Cost: AAPOR states at least 2x, maybe 3-4x cost of landline survey
• Getting addresses
• Quality of data (may be similar to landlines)

Source: AAPOR
‘Cold calling’ vs prior contact/letters

• Time and expense of mailing letters (only possible when we have name and address)
• May increase willingness to talk to interviewers (call display)
• However, many households will not include any eligible people
Contacting subjects

• On average, anticipate making many calls to recruit a single person
 – Up to 7-10 calls to obtain response
 – Leave message?
 – Willingness to participate

• Working on assumption of 20% ‘recruitment rate’ for health registry data (15% in 75-85 age group)

• Exclude households without a phone
Estimation of sampling weights

- Calculate probability of selecting sampling unit (in CLSA, unit = person)
- Account for different sampling frames
- Allow for non-response
- Use weights to estimate parameters (means, proportions, etc) for the target population
- Various assumptions required
Sources of the CLSA sample

• Tracking cohort:
 – CCHS
 – Health registries
 – RDD

• Comprehensive cohort
 – Health registries
 – RDD
Probabilities for the CCHS

• Provided by StatsCan
• Must allow for non-response in the CLSA
• Some issues on confidentiality – information sharing
Probabilities for the health registries

- Health registries (HR) have list of (virtually) all target population
- HR can provide numbers of people in each age-sex group for the province (denominators)
- Mail-outs from HRs will lead to estimation of proportion of ineligibles and adjustment of denominators
- Estimate probability of participation
Probabilities for RDD

- Phone numbers in range (population) identified
- For tracking, all numbers in province
- For comprehensive, some eligibility established during contact call
- Eligibility: private residence, geography, age, competent to interview, quota not filled, other
- Probability of selection is product of various probabilities
N: Number of TNs in sampling frame

N1: # of TNs called to achieve quota

N2: # of TNs not out of order

N3: # of TNs answered

N4: # of those TNs we find out if eligible as residence

N5: # of those TNs that are residences

N6: # of those we find out if geographically eligible

N7: # of those that are geographically eligible

N8: # of those for which we identify the eligible people in household

N9: # of those with an eligible person in household (from stratum)
N10: # of those with person from stratum chosen for the sample

N11a: # of those where chosen person is already on phone

N11b: # of those where chosen person is not already on phone

N12: # of those where person on phone asks chosen person to come to phone

N13: # of those where chosen person comes to phone

N14: # where chosen person agrees to participate
Some probabilities estimated

\[P_{\text{noo}} = \frac{\text{TNs not out of order}}{\text{TNs called to achieve quota}} \]

\[P_{\text{res}} = \frac{\text{TNs that are residences}}{\text{TNs we find out if eligible as residence}} \]

\[P_{\text{part}} = \frac{\text{number agreeing to participate}}{\text{number selected to participate}} \]
Combining samples from different sources

- Want overall $P(\text{Participation})$
- Use addition rule of probability
- E.g., for someone chosen via RDD, need $P(\text{Selected by RDD}) \text{ AND } P(\text{Selected in CCHS})$
- Latter is an average probability, not an individual one
- Similarly for selection through health registries
Additional issues

• When \(P(\text{Participation}) \) is based on the product of probabilities, have to assume independence of probabilities

• Confidentiality conditions may mean, e.g., we call people in RDD who were in the CCHS and did not want to participate in the CLSA

• In RDD, have to allow for multiple phones in the household

• At some point, likely to fill some age/sex quotas; then only recruit unfilled quotas
Summary

• Various sources of participants for CLSA
• Each has its own strengths and limitations
• Need to estimate sampling probabilities for each source
• Aiming for representativeness – but ...
• Various assumptions must be made