How to take a sample of Canadians; and how we're doing it in the Canadian Longitudinal Study on Aging

Lauren Griffith Harry Shannon McMaster University

CEB Rounds 15 February 2012

Outline of presentation

- Background on sampling
- Participants in the CLSA
- Sampling approaches in the CLSA
- CCHS participants
- Sampling from provincial health registries
- Principles of Random Digit Dialing
- Issues with RDD
- Conclusion

Principles of sampling

- Population vs Sample
- Want representative sample of some target population
- Need every member of the population to have non-zero probability of being sampled
- Must be able to estimate the probability of sampling any unit chosen

Simple random sampling

- All units in target population are known
- Sample is chosen randomly
- Each unit has an equal probability of being chosen
- Units may be individual, households, ...

Simple random sampling

O Unit sampled

Unit not sampled

More complex designs

- Stratification
- Clustering
- Multi-stage
- Combinations

Stratified random sampling

- Population of interest is divided into strata (e.g., male and female; young, middle-aged, old)
- Simple random sample is chosen from each stratum
- Probabilities of selection between the strata can vary
- May be more cost-efficient than simple random sampling

Stratified random sampling

Calculations in stratified sampling using weights

Stratum	Population			Sample		
	N	# with disease	Proportion	Fraction sampled	n	# with disease
1	5000	500	0.1	0.04		
2	2000	400	0.2	0.1		
Total	7000	900	0.13	0.06		

Calculation of weights in stratified sampling

Stratum	Population			Sample		
	N	# with disease	Proportion	Fraction sampled	n	# with disease
1	5000	500	0.1	0.04	200	
2	2000	400	0.2	0.1	200	
Total	7000	900	0.13	0.06	400	

Calculation of weights in stratified sampling

Stratum	Population			Sample		
	N # with disease	Proportion	Fraction sampled	n	# with disease	
1	5000	500	0.1	0.04	200	16
2	2000	400	0.2	0.1	200	43
Total	7000	900	0.13	0.06	400	59

Calculation of weights

Stratum	Population		Sample			
	Ν	# with disease	Proportion	Fraction sampled	n	# with disease
1	5000	500	0.1	0.04	200	16
2	2000	400	0.2	0.1	200	43
Total	7000	900	0.13	0.06	400	59

Weight, w = 1 / P(selected) Stratum 1: $w_i = 1/0.04 = 25$ Stratum 2: $w_i = 1/0.1 = 10$

Estimation of number in population with disease

- Label X_i = 0 if the disease is absent
 and 1 if it's present for person i
- The our estimate of the number of people with the disease in the population is
 Σ (w_iX_i)
- And the estimate of the proportion in the population with the disease is

 $\Sigma (w_i X_i) / \Sigma w_i$

Application to our numerical example

Stratum	Population			Sample		
	N	# with disease	se Proportion Fraction sampled	n	# with disease	
1	5000	500	0.1	0.04	200	16
2	2000	400	0.2	0.1	200	43
Total	7000	900	0.13	0.06	400	59

For Stratum 1, there are 16 people with $X_i = 1$ and 184 people with $X_i = 0$ The weight for each person is 25 Do the same for stratum 2.

Then $\Sigma(w_iX_i) = 830$ is our estimate of the number with the disease

Application to our numerical example

Stratum	Population			Sample		
	N	# with disease	Proportion	Fraction sampled	n	# with disease
1	5000	500	0.1	0.04	200	16
2	2000	400	0.2	0.1	200	43
Total	7000	900	0.13	0.06	400	59

Estimate of the population proportion with disease

$$= \Sigma (w_i X_i) / \Sigma w_i$$

- = 830 / 7000
- = 0.12

There are formulae to estimate the variance of the proportion. And we can do this for continuous (interval) data.

Cluster sampling

- For efficiency, one may sample people within certain groups
- Examples:
 - sample towns and then sample people or households within each town
 - Sample households and interview everyone in household

Cluster sampling

Unit (cluster) sampled
 Unit not sampled

- Individual sampled
- Individual not sampled

Cluster sampling

- Must allow for the lack of independence in the sampling – e.g., people in same family have similar diet
- Effective reduction in sample size, related to the 'intra-cluster correlation'
- Trade-off between cost of sampling at random and need to sample more units (e.g., people) in total

Sampling in difficult situations

- E.g., disaster areas, war zones, Low Income Countries
- Various alternative methods
- E.g., Extended Program on Immunization (EPI)
- Methods typically have some limitations
- May have to balance bias, precision, speed, cost

Back to CLSA ...

Aims of sampling in CLSA

• Choose representative sample of eligible Canadian residents

CLSA Data Collection

Potential Sampling Frames

- Canadian Community Health Survey Participants
- Provincial Health Registration Databases
- Random Digit Dialling

ALL OF THE ABOVE

- CCHS provided first part of sample
- Options for methods of selection of remaining participants:
 - Using provincial health registries preferred
 - Random digit dialing
- In several provinces, we cannot use registries, so need to do RDD

Recruitment from the CCHS

- CLSA collaborated with Statistics Canada to develop the CCHS Healthy Aging Questionnaire
- <u>Target population</u>: People aged 45 and over living in private occupied dwellings in the ten provinces
- <u>Excluded</u>:
 - Residents of the three territories
 - Persons living on Indian reserves or Crown lands
 - Persons living in institutions
 - Full-time members of the Canadian Forces
 - Residents of some remote regions

Recruitment from the CCHS, ctd.

Multi-stage sampling

- Sampling frame 2006 Census
- Selection
 - Clusters based on Census dissemination area blocks
 - Dwellings within cluster
 - Person within dwelling
- Response Rate
 - Household-level 80.8%
 - Person-level 92.1%
 - Overall 74.4%

Recruitment from the CCHS, ctd.

Participants were asked to share:

- Their contact information with the CLSA (for recruitment)
- Their survey responses with the CLSA (for analysis)

Recruitment from the CCHS, ctd.

Recruitment from

Provincial health registration databases

• 2005

 Feasibility study to explore practical, methodological and ethical aspects of accessing Health Care Utilization data from Provincial databases (published 2009)

- 2009-2011
 - Several meetings with Provincial Data Stewards and Privacy Commissioners to negotiate access to health registration databases for sampling

Tracking

Recruitment from

Provincial health registration databases

- Based on previous studies (completed in early 2000's) we anticipated a 15-20% recruitment rate
- Preliminary results from PEI and New Brunswick suggest that the recruitment rate may be lower ~7-10%

RDD – Tracking + Telephone Administered Questionnaires Pilot

	Mean Age (SD)	Language	Sex
Injury Module	70.5 y (11.2 y)	Fr=100	F=92
(n=200)		En=100	M=108
Tracking Baseline	64.3 y (10.6 y)	Fr=23	F=33
(n=50)		En=27	M=17
Maintaining	61.3 y (9.0 y)	Fr=12	F=12
Contact - Comp		En=13	M=13
(n=25)			
Maintaining	63.1 y (10.0 y)	Fr=15	F=13
Contact - Tracking		En=10	M=12
(n=25)			
TOTAL	62.7 y (10.8 y)	Fr=150	F=150
(n=300)		En=150	M=150

RDD – Comprehensive Pilot

Original Plan for Additional Recruitment

Ρ

Η

P=Provincial Health Registration Databases R=RDD Only H=Hybrid: RDD then Provincial Health Registration Databases

Ρ

Ρ

Ρ

н

R

Plan for Additional Recruitment

Η

H

H

Η

Η

R=RDD Only H=Hybrid: RDD then Provincial Health Registration Databases

Η

Η

Η

Н

R

RDD approach

- In principle, idea is simple
- Randomly sample numbers as far as possible in specified area codes and with next 3 digits in relevant area
- Identify eligible people at each number
- Randomly choose one person
- Recruit willing participants until 'quota' filled

Issues in using RDD

- Identifying numbers in specified area
- Having up-to-date list of numbers for target population
- Ability to compute sample weights
- Presence of landlines and/or cellphones
- Eligibility within household changes over time
- Method of initial contact
- Households without phones
- Numbers may be businesses, out of order, etc.
- People away from home (snowbirds, etc.)

Cell phones and landlines

- Statistics Canada survey December 2010
- Supplement to Labour Force Survey
- Households using cell phones exclusively:
 - Overall: 13%
 - Age 18-34 50%
 - Over 35 8%
 - Over 55 4%
- Increasing over time
- Landlines reach nearly all our eligibles

Combining samples from cell phones and landlines

- Methods have been described
- Need to determine all phones in each household
- Keep logs of unfilled quotas (age-sex numbers)
- Interviewers construct rosters of eligibles within households and randomly choose one

Some issues with cell phones

- Ethical: incoming calls may cost user; privacy; activity when answering (driving, etc); children
- Cost: AAPOR states at least 2x, maybe 3-4x cost of landline survey
- Getting addresses
- Quality of data (may be similar to landlines)

Source: AAPOR

'Cold calling' vs prior contact/letters

- Time and expense of mailing letters (only possible when we have name and address)
- May increase willingness to talk to interviewers (call display)
- However, many households will not include any eligible people

Contacting subjects

- On average, anticipate making many calls to recruit a single person
 - Up to 7-10 calls to obtain response
 - Leave message?
 - Willingness to participate
- Working on assumption of 20% 'recruitment rate' for health registry data (15% in 75-85 age group)
- Exclude households without a phone

Estimation of sampling weights

- Calculate probability of selecting sampling unit (in CLSA, unit = person)
- Account for different sampling frames
- Allow for non-response
- Use weights to estimate parameters (means, proportions, etc) for the target population
- Various assumptions required

Sources of the CLSA sample

- Tracking cohort:
 - CCHS
 - Health registries
 - RDD
- Comprehensive cohort
 - Health registries

– RDD

Probabilities for the CCHS

- Provided by StatsCan
- Must allow for non-response in the CLSA
- Some issues on confidentiality information sharing

Probabilities for the health registries

- Health registries (HR) have list of (virtually) all target population
- HR can provide numbers of people in each age-sex group for the province (denominators)
- Mail-outs from HRs will lead to estimation of proportion of ineligibles and adjustment of denominators
- Estimate probability of participation

Probabilities for RDD

- Phone numbers in range (population) identified
- For tracking, all numbers in province
- For comprehensive, some eligibility established during contact call
- Eligibility: private residence, geography, age, competent to interview, quota not filled, other
- Probability of selection is product of various probabilities

Some probabilities estimated

 $P_{noo} = \frac{TNs \ not \ out \ of \ order}{TNs \ called \ to \ achieve \ quota}$

$P_{res} = \frac{TNs \ that \ are \ residences}{TNs \ we \ find \ out \ if \ eligible \ as \ residence}$

 $P_{part} = \frac{number \ agreeing \ to \ participate}{number \ selected \ to \ participate}$

Combining samples from different sources

- Want overall P(Participation)
- Use addition rule of probability
- E.g., for someone chosen via RDD, need
 P(Selected by RDD) <u>AND</u> P(Selected in CCHS)
- Latter is an average probability, not an individual one
- Similarly for selection through health registries

Additional issues

- When P(Participation) is based on the product of probabilities, have to assume independence of probabilities
- Confidentiality conditions may mean, e.g., we call people in RDD who were in the CCHS and did not want to participate in the CLSA
- In RDD, have to allow for multiple phones in the household
- At some point, likely to fill some age/sex quotas; then only recruit unfilled quotas

Summary

- Various sources of participants for CLSA
- Each has its own strengths and limitations
- Need to estimate sampling probabilities for each source
- Aiming for representativeness but ...
- Various assumptions must be made