

Canadian Longitudinal Study on Aging Étude longitudinale canadienne sur le vieillissement

Canadian Longitudinal Study on Aging: Advancing the Science of Population Health and Aging through Interdisciplinary Research

Lauren Griffith, PhD

CLSA Associate Scientific Director

Department of Clinical Epidemiology and Biostatistics, Faculty of Health
Sciences, McMaster University, Hamilton

DSECT Webinar, Sept. 12th, 2013

Population aging

- Due to declining fertility and increasing longevity (demographic transition)
- Unprecedented, accelerating, shifts will be permanent
- Profound implications for human life, including health

Population Totals in Canada by Age Group and Year

Population Totals in Canada by Age Group and Year

Rectangularization of the survival curve

FURTHER INCREASE IN LIFE EXPECTANCY

Squaring the survival curve

Figure: Mortality According to Age in the Absense of Premature Death

- Morbidity compressed into a short period prior to death
- Represented an important shift in thinking
- Departure from the medical model of aging, which assumed that death always occurred as a result of a disease process, and that older age was a period of inevitable decline

Compression of morbidity

Fries' paradigm based on the premise that:

- The length of human life is fixed AND
- Chronic disease can be postponed
- Predicted that the increase in life expectancy would plateau in the coming decades, particularly life expectancy from age 65 which excludes early life mortality

Evidence suggests otherwise

- Is average life expectancy approaching an upper limit to life expectancy?
 - the evidence that the average life span is 85 years is unconvincing
 - there is no evidence for further rectangularization of survival curves
- Will age at first infirmity increase?
 - there is no evidence for over-all declines in incidence of morbidity: on the contrary
 - evidence for actual "(de)compression" of morbidity is ambiguous

Historical increases of life expectancy Oeppen and Vaupel, Science 2002; C Finch adaptation

Demographic Futures

- Upward trend in life expectancy continue, cease, or reverse?
 - + Effective interventions against age-related diseases
 - + Improved environment for ageing
 - + Life-cycle deceleration (delayed reproduction)
 - Adverse effects of excess nutrition
 - Adverse effects of alcohol and drug abuse
 - Adverse effects of increasingly sedentary lifestyles
 - Life-cycle acceleration (early maturation)

|Why aging occurs

Intrinsic

Extrinsic

How aging is caused

Genes Associated With Avoiding Late-Life Disease in Humans

Table 4

GENE	BIOCHEMICAL FUNCTION	COMMENTS	REFERENCES		
APOE	Lipoprotein metabolism	E2 variant is frequent in centenarians while E4 variant as a risk factor for Alzheimer's disease is rare in centenarians.	Schachter et al. 1994		
ACE	Angiotensin-converting enzyme	Plays a role in regulating blood pressure.	Schachter et al. 1994		
PAI1	Plasminogen activator inhibitor 1	Plays a role in blood clotting, thus affecting risk of stroke and heart attack.	Mannucci et al. 1997		
HLA-DR	Histocompatability locus antigen	DR variant is frequent in centenarians; resists infection and inflammation?	Ivanova et al. 1998		
WRN	Possesses both DNA helicase and exonuclease activity	Gene responsible for Werner's Syndrome; mutation leads to a variety of aging-related pathologies, e.g., cataracts, can- cer, osteoporosis, slow wound healing, etc.	Yu et al. 1996 Huang et al. 1998 Martin and Oshima 2000		
B3AR	B-3 adrenergic receptor	Allelic form present affects time of onset of Type 2 diabetes.	Walston et al. 1995		
MTHFR	5-, 10-methylenetetra- hydrofolate reductase	Deficiency leads to increased levels of homocysteine and DNA hypomethylation; increases risk of cardiovascular disease and cancer.	Heijmans et al. 2000		
KLOTHO	Membrane protein with β-glucosidase activity?	Homozygous variant form is underrepresented in elderly individuals.	Arking et al. 2002		

Genetic Heritability of Human Lifespan

Cournil & Kirkwood Trends in Genetics 2001

Twin Studies

McGue et al (1993)	0.22
Herskind et al (1996)	0.25
Ljungquist et al (1998)	<0.33

Traditional Family Studies

Philippe (1978)	0-0.24
Bocquet-Appel & Jakobi (1990)	0.10-0.30
Mayer (1990)	0.10-0.33
Gavrilova et al (1998)	0.18-0.58
Cournil et al (2000)	0.27

Genes account for 25% of what determines disease and longevity

EPIGENETICS

30 nm fiber 10 nm fiber

DNA AND CHROMOSOME LEVELS

Non-Biological/Medical Determinants of Aging?

- Nutrition
- Lifestyle
- Environment
 - Physical
 - Social
 - Economic
 - Work Place
 - Psychological
- Chance

Intrinsic and Extrinsic Factors

Time (Longitudinal Study)

The Canadian Longitudinal Study on Aging (CLSA)

- A key strategic initiative of CIHR
 - The Canadian Longitudinal Study on Aging
- More than 160 researchers 26 institutions
- Multidisciplinary biology, genetics, medicine, psychology, sociology, demography, economics, epidemiology, nursing, nutrition, health services, biostatistics, population health

CLSA- The Concept

The Vision

A research platform - - infrastructure to enable stateof-the-art interdisciplinary population based *research* and *evidenced-based* decision making.

The Aim

To study aging as a dynamic process and the interrelationship among intrinsic and extrinsic factors from mid life to older age.

Innovation - Cell to Society

- Mid life to old age
- Quantitative traits
 - Physical
 - Social
 - Psychological
- Gene-environment interactions
- Disease, disability, psychosocial consequences

Overall Aims of the CLSA

- The progression of health from middle-age to early old age to older old age
- The determinants of well-being and quality of life
- Risk Factors (including genetics) of Chronic diseases
- Cognitive functioning and mental health
- Disability and the compression of morbidity
- The examination of socioeconomic and health inequalities in an aging population
- Social participation, social relationships and care giving in an aging population
- Retirement and post retirement labor market activity

CLSA Architecture

Sampling and Subject Selection

CLSA collaborated with Statistics Canada to develop Sampling Strategy

- Target population: People aged 45-85 living in private occupied dwellings in the ten provinces
- Excluded:
 - Residents of the three territories
 - Persons living on Indian reserves or Crown lands
 - Persons living in institutions
 - Full-time members of the Canadian Forces
 - Residents of some remote regions

CLSA – CCHS Healthy Aging

Multi-stage sampling

- Sampling frame 2006 Census
- Selection
 - Clusters based on Census dissemination area blocks
 - Dwellings within cluster
 - Person within dwelling
- Response Rate
 - Household-level 80.8%
 - Person-level 92.1%
 - Overall 74.4%

CLSA – CCHS Healthy Aging

Participants were asked to share:

- Their contact information with the CLSA (for recruitment)
- Their survey responses with the CLSA (for analysis)

Aims of sampling

- Choose representative sample of eligible Canadians
 - 20K Tracking cohort; 30K Comprehensive cohort
 - Specified numbers in age-sex groups by province
- Options for methods of selection:
 - Using provincial health registries
 - Random digit dialing
- In Alberta and Quebec, we could not use registries

Example of requirement by province Tracking cohort

Alberta

	45-54		55-64		65-74		75-85		T .4.1
	M	F	M	F	M	F	M	F	Total
# Required	306	306	306	306	204	204	204	204	2,040
# Providing Contact Info	121	128	153	193	108	138	74	107	1,022
# Anticipated through CCHS	28	35	56	82	53	64	33	25	376
# Additional Participants	278	271	250	224	151	140	171	179	1,664
# Need to Sample*	Х	Х	Х	Х	Х	Х	Х	Х	Х

Canadian Longitudinal Study on Aging

Étude longitudinale canadienne sur le vieillissement

* This will depend on the recruitment rate per number sampled

RDD approach

- Randomly sample numbers as far as possible in specified area codes and with next 3 digits in relevant area
- Identify eligible people at that number
- Randomly choose one person
- Recruit willing participants

Issues in using RDD

- Identifying numbers in specified area
- Having up-to-date list of numbers
- Ability to compute sample weights
- Presence of landlines and/or cellphones
- Eligibility within household changes over time
- Method of initial contact
- Households without phones
- Numbers may be businesses, out of order, etc.
- People away from home (snowbirds, etc.)

Cell phones and landlines

- Statistics Canada survey December 2010
- Supplement to Labour Force Survey
- Households using cellphones exclusively:

```
– Overall: 13%
```

- Age 18-34 50%

– Over 35 8%

– Over 55 4%

- Increasing over time
- Landlines reach nearly all our eligibles

'Cold calling' vs prior contact/letters

- Time and expense of mailing letters (only possible when we have name and address)
- May increase willingness to talk to interviewers (call display)
- Perhaps try both initially and then move to using one

Contacting subjects

- On average, anticipate making many calls to recruit a single person
 - Up to 7-10 calls to obtain response
 - Leave message?
 - Willingness to participate
- Working on assumption of 20% 'recruitment rate' for health registry data (15% in 75-85 age group)
- Exclude households without a phone

Some questions

- Should we try both cold calling and prior contact?
- Is it OK to exclude households without a phone?
- Should we leave a message after n calls fail to contact anyone at the number?
- Should we exclude cell phones?

Depth and Breadth of CLSA

PHYSICAL & COGNITIVE MEASUREMENTS

- Height, Weight
- Waist and hip measurements
- Bioimpedence
- Arterial pressure
- Mean heart rate
- Grip strength, timed up-and-go, chair raise, 4-m walk
- Standing balance
- Vision
- Hearing
- Spirometry
- Bone density
- Aortic calcification
- ECG
- Carotid intima-media thickness
- Cognitive Assessment

HEALTH INFORMATION

- Chronic disease symptoms (11 chronic conditions)
- Medication intake & Compliance
- Women's health
- Self reported Health service use
- Oral health
- Preventative Health
- Administrative data Linkage Health Services & Drugs
- Other Administrative Data bases

PSYCHOSOCIAL

- Social participation
- Social networks and support
- Care giving and Care receiving
- Mood, Psychological distress
- Coping, Adaptation
- Work to retirement transitions
- •Job-Demand/Effort Reward
- Retirement Planning
- Social Inequalities
- Mobility-Lifespace
- Built Environments
- Wealth

LIFESTYLE & SOCIODEMOGRAPHIC

- Smoking
- Alcohol consumption
- Physical activity
- Nutrition
- Birth location
- Ethnicity/Race/Gender
- Marital status
- Education
- Income

Canadian Longitudinal Study on Aging Étude longitudinale canadienne sur le vieillissement

Data Collection Overview

Potential Participants Sent Study Information

Participants
Consent to
Participate in
CLSA

Participants Provide Questionnaire Data (n=50,000)

Biological Data

- Blood
- Urine

Physical/Psychological Data

- Neuropsychological Battery
- Performance Testing
- Anthropometric Measures
- Full body Bone Density
- Aortic Calcification
- ECG
- Carotid Intimal-Medial Thickness
- Pulmonary Function
- Vision and Hearing

n=30,000 n=20,000

Home Interview

Telephone interview

Stored in Biobank (BBC) and Biomarker analysis

Questionnaire Data Processed

Biological Samples

BIOCHEMICAL & HEMATOLOGICAL ANALYSIS (50 ml Blood; Urine)

General Hematology

- Basophils
- Eosinophils
- Neutrophils
- Lymphocytes
- Monocytes
- White blood count
- Red blood cells
- Hemoglobin
- Platelets

Lipid Profile

- HDL-cholesterol
- LDL-cholesterol
- Tryglycerides
- Glucose
- Fasting blood sugar

Genetic and Epigenetic Markers

Biospecimen Science

- The study of the molecular integrity of biospecimens
 - How pre-analytical handling affects analytic results
- Based on the desire to have high-quality wellannotated clinical samples to facilitate biomarker discovery and validation

Chaos in the Brickyard
Bernard Forscher Science 1963;142:339

Sources of Variation

Pre-analytical	Analytical	Post-analytical
 Patient state Biological variation Patient preparation Collection Processing Storage 	 Method type Calibration Lot number Traceability Interferences 	 Transmission of the test result Data analysis Reference intervals, decision limits, algorithms (multimarker panels)
Biospecimen	Uncertainty of measurement	Interpretation

Canadian Longitudinal Study on Aging Étude longitudinale canadienne sur le vieillissement

Pre-analytical Variation (Bias)

Sample Quality is Imperative

- Lack of quality leads to false positives and false negatives, inaccuracy and nonreproducibility
 - Erodes public confidence
 - Wastes time and money
 - Impedes clinical development

High-quality data depends on high-quality analysis and high-quality specimens

Biospecimen Challenges

- Evidence-based best practices and standard operating procedures (SOP)
 - Reduction of process variation to yield unbiased samples
- Quality indicators/molecular markers and metrics for stored samples
- Certification of personnel and accreditation of biobanks
- Reporting criteria for biospecimens
 - Documentation/publication

Example Study Question

Physical Function Mobility

Mobility «activity & participation»

Examples of precursors

Individual (or intrinsic)

Chronic diseases (eg osteoarthritis) Neuropsychological conditions Cognition/Perceived health Medication use/Pain/ Dizziness Poor vision Fear of falling/

Obesity/Nutrition/weight loss/appetite Physical activity/fitness/strength Functional performance (measured & reported) Alcohol use Biomarkers (inflammation, hormonal, metabolism,

genetics, epigenetics) Personality

Contextual (or extrinsic or environmental)

Social partcipation Transportation resources Community/neighbourhood characteristics Social network/support

Examples of consequences

Diseases

Osteoporosis, sarcopenia

Physical Health

Injuries/Frailty/Disability

Poor nutrition status

Psychological Health

Psychological distress

Quality of life

Loneliness

Unmet needs

Social Health

Social participation/engagement/capital

Work Transitions

Unmet needs

Institutionalization

Mobility

Mobility as a precursor:

Is mobility in mid- and later life associated with physical, psychological and social functioning? Specifically:

 How do changes in mobility impact upon indicators of psychological health including, depression, psychological distress, satisfaction with life, adjusting for other factors?

Mobility

Mobility as a mediator:

How does mobility in mid- and later life mediate relationships between determinants of health and health outcomes? Specifically:

 How does compromised mobility mediate the relationship between income and health?

Mobility

Mobility as an outcome:

How do physical, psychological, and social functioning in mid- and later life relate to changes in mobility? Specifically:

- What is the relationship between inflammatory biomarkers (e.g., IL-6, C reactive protein, albumin), hormonal biomarkers (e.g., IGF-1, T3, T4), metabolic (e.g., fasting glucose, cholesterol) or immunological markers (TNFα), oxidative stress (e.g. vitamin E and C), vitamin D, and (Epi) genetic markers (e.g., IGF-I and Apo-E) and changes in mobility and how is this relationship is modified by SES?
- What is the relationship between neighbourhood deprivation and incident mobility disability in aging population?

Where are we now?

CLSA Recruitment

Tracking Cohort

- Recruitment via CCHS complete
- Recruitment ongoing in all provinces through Ministry of Health (MoH) and/or Random Digit Dialing (RDD)
- Completion of all 20,000 baseline interviews by Spring 2013
- As of today:
 - ➤ 15,728 completed 60 minute baseline interview

Comprehensive Cohort

- Recruiting ongoing in all provinces through MoH and/or RDD
- Goal: complete first 8,000-10,000 baseline DCS visits by July 2013.
- As of today:
 - > 5,029 in home interviews and 3,806 DCS visits completed (recruited)

Milestones for 2013

- Complete recruitment for Tracking Cohort 20,000
- Recruit first 8,000-10,000 participants for Comprehensive Cohort
- Initiate Maintaining Contact for Tracking Cohort
- Data curation, derived variables and data cleaning
- Data access process, portal developed and tested
- Baseline tracking data released (early 2014)
- Planning and development for Wave 2

Upcoming areas of interest and development for the CLSA

- Core biomarker analysis
- Imaging studies linking vascular imaging and the brain
- Implementation of neurological conditions initiative
- Selected possible enhancements to data collection
 - Environmental exposures
 - Life course, adaptation
 - Medication compliance
 - Contextual data
- Linkages and data harmonization

What would you like to see added to the CLSA?

Other Ideas for Research Questions?

Funded by the Government of Canada through the CIHR and CFI, and by Provincial Governments

Transforming Everyday Life into Extraordinary Ideas

griffith@mcmaster.ca www.clsa-elcv.ca

