Canadian Longitudinal Study on Aging: Advancing the Science of Population Health and Aging through Interdisciplinary Research

Lauren Griffith, PhD
CLSA Associate Scientific Director
Department of Clinical Epidemiology and Biostatistics, Faculty of Health Sciences, McMaster University, Hamilton

DSECT Webinar, Sept. 12th, 2013
Population aging

- Due to declining fertility and increasing longevity (demographic transition)
- Unprecedented, accelerating, shifts will be permanent
- Profound implications for human life, including health
Population Totals in Canada by Age Group and Year

<table>
<thead>
<tr>
<th>AGE</th>
<th>MALES</th>
<th>BOTH SEXES</th>
<th>FEMALES</th>
</tr>
</thead>
<tbody>
<tr>
<td>80+</td>
<td>229898</td>
<td>670192</td>
<td>440294</td>
</tr>
<tr>
<td>75-79</td>
<td>255599</td>
<td>622194</td>
<td>366595</td>
</tr>
<tr>
<td>70-74</td>
<td>364298</td>
<td>833991</td>
<td>469693</td>
</tr>
<tr>
<td>65-69</td>
<td>497996</td>
<td>1084588</td>
<td>586592</td>
</tr>
<tr>
<td>60-64</td>
<td>578596</td>
<td>1190087</td>
<td>611491</td>
</tr>
<tr>
<td>55-59</td>
<td>618096</td>
<td>1238387</td>
<td>620291</td>
</tr>
<tr>
<td>50-54</td>
<td>673295</td>
<td>1339986</td>
<td>666691</td>
</tr>
<tr>
<td>45-49</td>
<td>844194</td>
<td>1674182</td>
<td>829988</td>
</tr>
<tr>
<td>40-44</td>
<td>1076892</td>
<td>2138777</td>
<td>1061885</td>
</tr>
<tr>
<td>35-39</td>
<td>1173491</td>
<td>2344675</td>
<td>1171184</td>
</tr>
<tr>
<td>30-34</td>
<td>1311991</td>
<td>2597873</td>
<td>1285882</td>
</tr>
<tr>
<td>25-29</td>
<td>1282190</td>
<td>2528572</td>
<td>1246382</td>
</tr>
<tr>
<td>20-24</td>
<td>1067593</td>
<td>2108978</td>
<td>1041385</td>
</tr>
<tr>
<td>15-19</td>
<td>984993</td>
<td>1925780</td>
<td>940787</td>
</tr>
<tr>
<td>10-14</td>
<td>980292</td>
<td>1912979</td>
<td>932687</td>
</tr>
<tr>
<td>5-9</td>
<td>998293</td>
<td>1953079</td>
<td>954786</td>
</tr>
<tr>
<td>0-4</td>
<td>1000393</td>
<td>1953280</td>
<td>952887</td>
</tr>
</tbody>
</table>

1991 TOTALS: 13938100 | 28117600 | 14179500
Population Totals in Canada by Age Group and Year

<table>
<thead>
<tr>
<th>AGE</th>
<th>MALES</th>
<th>BOTH SEXES</th>
<th>FEMALES</th>
</tr>
</thead>
<tbody>
<tr>
<td>80+</td>
<td>229898</td>
<td>670192</td>
<td>440294</td>
</tr>
<tr>
<td>75-79</td>
<td>255599</td>
<td>622194</td>
<td>366595</td>
</tr>
<tr>
<td>70-74</td>
<td>364298</td>
<td>833991</td>
<td>469693</td>
</tr>
<tr>
<td>65-69</td>
<td>49796</td>
<td>1084588</td>
<td>586592</td>
</tr>
<tr>
<td>60-64</td>
<td>578596</td>
<td>1190087</td>
<td>611491</td>
</tr>
<tr>
<td>55-59</td>
<td>618096</td>
<td>1238387</td>
<td>620291</td>
</tr>
<tr>
<td>50-54</td>
<td>673295</td>
<td>1339986</td>
<td>666691</td>
</tr>
<tr>
<td>45-49</td>
<td>844194</td>
<td>1674182</td>
<td>829988</td>
</tr>
<tr>
<td>40-44</td>
<td>1076892</td>
<td>2138777</td>
<td>1061885</td>
</tr>
<tr>
<td>35-39</td>
<td>1173491</td>
<td>2344675</td>
<td>1171184</td>
</tr>
<tr>
<td>30-34</td>
<td>1311991</td>
<td>2597873</td>
<td>1285882</td>
</tr>
<tr>
<td>25-29</td>
<td>1282190</td>
<td>2528572</td>
<td>1246382</td>
</tr>
<tr>
<td>20-24</td>
<td>1067593</td>
<td>2108978</td>
<td>1041385</td>
</tr>
<tr>
<td>15-19</td>
<td>984993</td>
<td>1925780</td>
<td>940787</td>
</tr>
<tr>
<td>10-14</td>
<td>980292</td>
<td>1912979</td>
<td>932687</td>
</tr>
<tr>
<td>5-9</td>
<td>998293</td>
<td>1953079</td>
<td>954786</td>
</tr>
<tr>
<td>0-4</td>
<td>1000393</td>
<td>1953280</td>
<td>952887</td>
</tr>
</tbody>
</table>

1991 TOTALS

- MALES: 13938100
- BOTH SEXES: 28117600
- FEMALES: 14179500
Rectangularization of the survival curve

FURTHER INCREASE IN LIFE EXPECTANCY

Squaring the survival curve

Compression of morbidity

- Morbidity compressed into a short period prior to death
- Represented an important shift in thinking
- Departure from the medical model of aging, which assumed that death always occurred as a result of a disease process, and that older age was a period of inevitable decline

Figure: Mortality According to Age in the Absence of Premature Death
Compression of morbidity

Fries’ paradigm based on the premise that:

- The length of human life is fixed
- Chronic disease can be postponed

- Predicted that the increase in life expectancy would plateau in the coming decades, particularly life expectancy from age 65 which excludes early life mortality
Evidence suggests otherwise

- Is average life expectancy approaching an upper limit to life expectancy?
 - The evidence that the average life span is 85 years is unconvincing
 - There is no evidence for further rectangularization of survival curves

- Will age at first infirmity increase?
 - There is no evidence for over-all declines in incidence of morbidity: on the contrary
 - Evidence for actual “(de)compression” of morbidity is ambiguous
Historical increases of life expectancy
Oeppen and Vaupel, Science 2002; C Finch adaptation

Phase 1
early urban

Phase 2
sanitation-nutrition

Phase 3?
regeneration
modern medicine
Social Policy Innovation

<table>
<thead>
<tr>
<th>Year</th>
<th>England</th>
<th>Norway</th>
<th>New Zealand</th>
<th>Iceland</th>
<th>Netherlands</th>
<th>Sweden</th>
<th>Japan</th>
</tr>
</thead>
<tbody>
<tr>
<td>1550</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1600</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1650</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1700</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1750</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1800</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1850</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1900</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1950</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2050</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Life expectancy in years

90 80 70 60 50 40 30 1550 1600 1650 1700 1750 1800 1850 1900 1950 2000 2050
Demographic Futures

- Upward trend in life expectancy continue, cease, or reverse?
 + Effective interventions against age-related diseases
 + Improved environment for ageing
 + Life-cycle deceleration (delayed reproduction)

- Adverse effects of excess nutrition
- Adverse effects of alcohol and drug abuse
- Adverse effects of increasingly sedentary lifestyles
- Life-cycle acceleration (early maturation)
Why aging occurs

How aging is caused

Intrinsic

Extrinsic
Genes Associated With Avoiding Late-Life Disease in Humans

<table>
<thead>
<tr>
<th>GENE</th>
<th>BIOCHEMICAL FUNCTION</th>
<th>COMMENTS</th>
<th>REFERENCES</th>
</tr>
</thead>
<tbody>
<tr>
<td>APOE</td>
<td>Lipoprotein metabolism</td>
<td>E2 variant is frequent in centenarians while E4 variant as a risk factor for Alzheimer’s disease is rare in centenarians.</td>
<td>Schachter et al. 1994</td>
</tr>
<tr>
<td>ACE</td>
<td>Angiotensin-converting enzyme</td>
<td>Plays a role in regulating blood pressure.</td>
<td>Schachter et al. 1994</td>
</tr>
<tr>
<td>PAI1</td>
<td>Plasminogen activator inhibitor 1</td>
<td>Plays a role in blood clotting, thus affecting risk of stroke and heart attack.</td>
<td>Mannucci et al. 1997</td>
</tr>
<tr>
<td>HLA-DR</td>
<td>Histocompatibility locus antigen</td>
<td>DR variant is frequent in centenarians; resists infection and inflammation?</td>
<td>Ivanova et al. 1998</td>
</tr>
<tr>
<td>WRN</td>
<td>Possesses both DNA helicase and exonuclease activity</td>
<td>Gene responsible for Werner’s Syndrome; mutation leads to a variety of aging-related pathologies, e.g., cataracts, cancer, osteoporosis, slow wound healing, etc.</td>
<td>Yu et al. 1996, Huang et al. 1998, Martin and Oshima 2000</td>
</tr>
<tr>
<td>B3AR</td>
<td>B-3 adrenergic receptor</td>
<td>Allelic form present affects time of onset of Type 2 diabetes.</td>
<td>Walston et al. 1995</td>
</tr>
<tr>
<td>MTHFR</td>
<td>5-, 10-methylenetetrahydrofolate reductase</td>
<td>Deficiency leads to increased levels of homocysteine and DNA hypomethylation; increases risk of cardiovascular disease and cancer.</td>
<td>Heijmans et al. 2000</td>
</tr>
<tr>
<td>KLOTHO</td>
<td>Membrane protein with β-glucosidase activity?</td>
<td>Homozygous variant form is underrepresented in elderly individuals.</td>
<td>Arking et al. 2002</td>
</tr>
</tbody>
</table>
Genetic Heritability of Human Lifespan

Cournil & Kirkwood *Trends in Genetics* 2001

<table>
<thead>
<tr>
<th>Twin Studies</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>McGue et al (1993)</td>
<td>0.22</td>
</tr>
<tr>
<td>Herskind et al (1996)</td>
<td>0.25</td>
</tr>
<tr>
<td>Ljungquist et al (1998)</td>
<td><0.33</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Traditional Family Studies</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Philippe (1978)</td>
<td>0-0.24</td>
</tr>
<tr>
<td>Bocquet-Appel & Jakobi (1990)</td>
<td>0.10-0.30</td>
</tr>
<tr>
<td>Mayer (1990)</td>
<td>0.10-0.33</td>
</tr>
<tr>
<td>Gavrilova et al (1998)</td>
<td>0.18-0.58</td>
</tr>
<tr>
<td>Cournil et al (2000)</td>
<td>0.27</td>
</tr>
</tbody>
</table>

Genes account for 25% of what determines disease and longevity
EPIGENETICS

ON/OFF SWITCH (GENE)

GUMMED UP ON/OFF SWITCH (GENE)

30 nm fiber 10 nm fiber

CANNOT

CAN

DNA AND CHROMOSOME LEVELS

HAc

Me

GUM

Me

GUM

HAc

Me

CANNOT

CAN
Non-Biological/Medical Determinants of Aging?

- Nutrition
- Lifestyle
- Environment
 - Physical
 - Social
 - Economic
 - Work Place
 - Psychological
- Chance
Intrinsic and Extrinsic Factors

Environmental influences
(e.g., rural, socio-economic, exercise, nutrition)

Genetics
(e.g., telomeres/oxidative stress, psychological & cognitive abilities, immune functions)

Chronic diseases
(e.g., diabetes, cancer, dementia, arthritis, cardio)

Aging
infections

Health Services Utilization

Time (Longitudinal Study)
The Canadian Longitudinal Study on Aging (CLSA)

A key strategic initiative of CIHR

The Canadian Longitudinal Study on Aging

More than 160 researchers - 26 institutions

Multidisciplinary - biology, genetics, medicine, psychology, sociology, demography, economics, epidemiology, nursing, nutrition, health services, biostatistics, population health
CLSA- The Concept

The Vision

A research platform - infrastructure to enable state-of-the-art interdisciplinary population based research and evidenced-based decision making.

The Aim

To study aging as a dynamic process and the inter-relationship among intrinsic and extrinsic factors from mid life to older age.
Innovation - Cell to Society

- Mid life to old age
- Quantitative traits
 - Physical
 - Social
 - Psychological
- Gene-environment interactions
- Disease, disability, psychosocial consequences
- Adaptation
Overall Aims of the CLSA

- The progression of **health** from middle-age to early old age to older old age
- The determinants of **well-being and quality of life**
- Risk Factors (including genetics) of **Chronic diseases**
- **Cognitive functioning** and **mental health**
- **Disability** and the compression of morbidity
- The examination of socioeconomic and health **inequalities** in an aging population
- **Social participation, social relationships and care giving** in an aging population
- **Retirement** and **post retirement** labor market activity
CLSA Architecture

Inter-Departmental study of 50,000 (at 11 sites)

Questionnaires, Database linkage

Follow-up over 20 years

Inception Cohort: 50,000

In-depth data collection on 30,000 (at 11 sites)

Clinical, Biological, Physical

Every 3 years age 45-85

Map of Canada showing various cities: Burnaby, Vancouver, Victoria, Calgary, Winnipeg, Sherbrooke, Montreal, Halifax, St. Johns, Ottawa, Hamilton, Montreal.
Sampling and Subject Selection

CLSA collaborated with Statistics Canada to develop Sampling Strategy

- **Target population**: People aged 45-85 living in private occupied dwellings in the ten provinces

- **Excluded**:
 - Residents of the three territories
 - Persons living on Indian reserves or Crown lands
 - Persons living in institutions
 - Full-time members of the Canadian Forces
 - Residents of some remote regions
Multi-stage sampling

- Sampling frame 2006 Census
- Selection
 - Clusters based on Census dissemination area blocks
 - Dwellings within cluster
 - Person within dwelling
- Response Rate
 - Household-level 80.8%
 - Person-level 92.1%
 - Overall 74.4%
CLSA – CCHS Healthy Aging

Participants were asked to share:
- Their contact information with the CLSA (for recruitment)
- Their survey responses with the CLSA (for analysis)

20,087 (76.3%) of Eligible Participants provided data to CLSA

N=30,865
N=26,248
N=4,617
N=11,742
N=8,345
N=527
N=5,634

Contact + Survey
Survey Only
Contact Only
Neither

45-85
>85

Canadian Longitudinal Study on Aging
Étude longitudinale canadienne sur le vieillissement
Aims of sampling

- Choose representative sample of eligible Canadians
 - 20K Tracking cohort; 30K Comprehensive cohort
 - Specified numbers in age-sex groups by province

- Options for methods of selection:
 - Using provincial health registries
 - Random digit dialing

- In Alberta and Quebec, we could not use registries
Example of requirement by province
Tracking cohort

<table>
<thead>
<tr>
<th>Alberta</th>
<th>45-54</th>
<th>55-64</th>
<th>65-74</th>
<th>75-85</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>M</td>
<td>F</td>
<td>M</td>
<td>F</td>
<td>M</td>
</tr>
<tr>
<td># Required</td>
<td>306</td>
<td>306</td>
<td>306</td>
<td>306</td>
<td>204</td>
</tr>
<tr>
<td># Providing Contact Info</td>
<td>121</td>
<td>128</td>
<td>153</td>
<td>193</td>
<td>108</td>
</tr>
<tr>
<td># Anticipated through CCHS</td>
<td>28</td>
<td>35</td>
<td>56</td>
<td>82</td>
<td>53</td>
</tr>
<tr>
<td># Additional Participants</td>
<td>278</td>
<td>271</td>
<td>250</td>
<td>224</td>
<td>151</td>
</tr>
<tr>
<td># Need to Sample*</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>

* This will depend on the recruitment rate per number sampled
RDD approach

- Randomly sample numbers as far as possible in specified area codes and with next 3 digits in relevant area
- Identify eligible people at that number
- Randomly choose one person
- Recruit willing participants
Issues in using RDD

- Identifying numbers in specified area
- Having up-to-date list of numbers
- Ability to compute sample weights
- Presence of landlines and/or cellphones
- Eligibility within household – changes over time
- Method of initial contact
- Households without phones
- Numbers may be businesses, out of order, etc.
- People away from home (snowbirds, etc.)
Cell phones and landlines

- Statistics Canada survey December 2010
- Supplement to Labour Force Survey
- Households using cellphones exclusively:
 - Overall: 13%
 - Age 18-34: 50%
 - Over 35: 8%
 - Over 55: 4%
- Increasing over time
- Landlines reach nearly all our eligibles
‘Cold calling’ vs prior contact/letters

- Time and expense of mailing letters (only possible when we have name and address)
- May increase willingness to talk to interviewers (call display)
- Perhaps try both initially and then move to using one
Contacting subjects

- On average, anticipate making many calls to recruit a single person
 - Up to 7-10 calls to obtain response
 - Leave message?
 - Willingness to participate

- Working on assumption of 20% ‘recruitment rate’ for health registry data
 (15% in 75-85 age group)

- Exclude households without a phone
Some questions

- Should we try both cold calling and prior contact?
- Is it OK to exclude households without a phone?
- Should we leave a message after n calls fail to contact anyone at the number?
- Should we exclude cell phones?
Depth and Breadth of CLSA

PHYSICAL & COGNITIVE MEASUREMENTS
- Height, Weight
- Waist and hip measurements
- Bioimpedence
- Arterial pressure
- Mean heart rate
- Grip strength, timed up-and-go, chair raise, 4-m walk
- Standing balance
- Vision
- Hearing
- Spirometry
- Bone density
- Aortic calcification
- ECG
- Carotid intima-media thickness
- Cognitive Assessment

PSYCHOSOCIAL
- Social participation
- Social networks and support
- Care giving and Care receiving
- Mood, Psychological distress
- Coping, Adaptation
- Work to retirement transitions
- Job-Demand/Effort Reward
- Retirement Planning
- Social Inequalities
- Mobility-Lifespace
- Built Environments
- Wealth

LIFESTYLE & SOCIODEMOGRAPHIC
- Smoking
- Alcohol consumption
- Physical activity
- Nutrition
- Birth location
- Ethnicity/Race/Gender
- Marital status
- Education
- Income
Data Collection Overview

Potential Participants Sent Study Information

Participants Consent to Participate in CLSA

Participants Provide Questionnaire Data (n=50,000)

Physical/Psychological Data
- Neuropsychological Battery
- Performance Testing
- Anthropometric Measures
- Full body Bone Density
- Aortic Calcification
- ECG
- Carotid Intimal-Medial Thickness
- Pulmonary Function
- Vision and Hearing

Biological Data
- Blood
- Urine

Stored in Biobank (BBC) and Biomarker analysis

Stored in (NCC/SAC)

Questionnaire Data Processed

n=30,000

Telephone interview

n=20,000

Home Interview
Participants (50,000)

Enrolled

Questionnaire Data (50,000)

Physical Exam and Biological Specimen (30,000)

TIME

20 Years

Active Follow-up (F) Every 3 years
- Questionnaire
- Physical exam
- Biological samples

Maintaining Contact Interview (MC) mid-wave
- Update contact information
- Short Questionnaire

Passive Follow-up Every 3 years
- Health care utilization
- Disease registries
- Mortality databases

Data and Biological Sample Repositories

Researchers

Canadian Longitudinal Study on Aging
Étude longitudinale canadienne sur le vieillissement
Biological Samples

BIOCHEMICAL & HEMATOLOGICAL ANALYSIS (50 ml Blood; Urine)

General Hematology
- Basophils
- Eosinophils
- Neutrophils
- Lymphocytes
- Monocytes
- White blood count
- Red blood cells
- Hemoglobin
- Platelets

Lipid Profile
- HDL-cholesterol
- LDL-cholesterol
- Tryglycerides
- Glucose
- Fasting blood sugar

Genetic and Epigenetic Markers
Biospecimen Science

- The study of the molecular integrity of biospecimens
 - How pre-analytical handling affects analytic results
- Based on the desire to have high-quality well-annotated clinical samples to facilitate biomarker discovery and validation

Chaos in the Brickyard
Bernard Forscher Science 1963;142:339
Sources of Variation

<table>
<thead>
<tr>
<th>Pre-analytical</th>
<th>Analytical</th>
<th>Post-analytical</th>
</tr>
</thead>
<tbody>
<tr>
<td>Patient state</td>
<td>Method type</td>
<td>Transmission of the test result</td>
</tr>
<tr>
<td>Biological variation</td>
<td>Calibration</td>
<td>Data analysis</td>
</tr>
<tr>
<td>Patient preparation</td>
<td>Lot number</td>
<td>Reference intervals, decision limits, algorithms</td>
</tr>
<tr>
<td>Collection</td>
<td>Traceability</td>
<td>(multi-marker panels)</td>
</tr>
<tr>
<td>Processing</td>
<td>Interferences</td>
<td></td>
</tr>
<tr>
<td>Storage</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Biospecimen

Uncertainty of measurement

Interpretation
Pre-analytical Variation (Bias)
Sample Quality is Imperative

- Lack of quality leads to false positives and false negatives, inaccuracy and non-reproducibility
 - Erodes public confidence
 - Wastes time and money
 - Impedes clinical development

High-quality data depends on high-quality analysis and high-quality specimens
Biospecimen Challenges

- Evidence-based best practices and standard operating procedures (SOP)
 - Reduction of process variation to yield unbiased samples
- Quality indicators/molecular markers and metrics for stored samples
- Certification of personnel and accreditation of biobanks
- Reporting criteria for biospecimens
 - Documentation/publication
Example Study Question

Physical Function
Mobility
Examples of precursors

Individual (or intrinsic)
- Chronic diseases (e.g., osteoarthritis)
- Neuropsychological conditions
- Cognition/Perceived health
- Medication use/Pain/Dizziness
- Poor vision
- Fear of falling/
- Obesity/Nutrition/weight loss/appetite
- Physical activity/fitness/strength
- Functional performance (measured & reported)
- Alcohol use
- Biomarkers (inflammation, hormonal, metabolism, genetics, epigenetics)
- Personality

Contextual (or extrinsic or environmental)
- Social participation
- Transportation resources
- Community/neighborhood characteristics
- Social network/support

Examples of consequences

Diseases
- Osteoporosis, sarcopenia

Physical Health
- Injuries/Frailty/Disability
- Poor nutrition status

Psychological Health
- Psychological distress
- Quality of life
- Loneliness
- Unmet needs

Social Health
- Social participation/engagement/capital
- Work Transitions
- Unmet needs
- Institutionalization
Mobility as a precursor:

Is mobility in mid- and later life associated with physical, psychological and social functioning? Specifically:

– How do changes in mobility impact upon indicators of psychological health including, depression, psychological distress, satisfaction with life, adjusting for other factors?
Mobility

Mobility as a mediator:

How does mobility in mid- and later life mediate relationships between determinants of health and health outcomes? Specifically:

– How does compromised mobility mediate the relationship between income and health?
Mobility

Mobility as an outcome:
How do physical, psychological, and social functioning in mid- and later life relate to changes in mobility? Specifically:

– What is the relationship between inflammatory biomarkers (e.g., IL-6, C reactive protein, albumin), hormonal biomarkers (e.g., IGF-1, T3, T4), metabolic (e.g., fasting glucose, cholesterol) or immunological markers (TNFα), oxidative stress (e.g. vitamin E and C), vitamin D, and (Epi) genetic markers (e.g., IGF-I and Apo-E) and changes in mobility and how is this relationship is modified by SES?

– What is the relationship between neighbourhood deprivation and incident mobility disability in aging population?
Where are we now?
CLSA Recruitment

Tracking Cohort
- Recruitment via CCHS complete
- Recruitment ongoing in all provinces through Ministry of Health (MoH) and/or Random Digit Dialing (RDD)
- Completion of all 20,000 baseline interviews by Spring 2013
- As of today:
 - 15,728 completed 60 minute baseline interview

Comprehensive Cohort
- Recruiting ongoing in all provinces through MoH and/or RDD
- Goal: complete first 8,000-10,000 baseline DCS visits by July 2013.
- As of today:
 - 5,029 in home interviews and 3,806 DCS visits completed (recruited)
Milestones for 2013

• Complete recruitment for Tracking Cohort – 20,000
• Recruit first 8,000-10,000 participants for Comprehensive Cohort
• Initiate Maintaining Contact for Tracking Cohort
• Data curation, derived variables and data cleaning
• Data access process, portal developed and tested
• Baseline tracking data released (early 2014)
• Planning and development for Wave 2
Upcoming areas of interest and development for the CLSA

- Core biomarker analysis
 - Imaging studies linking vascular imaging and the brain
 - Implementation of neurological conditions initiative
 - Selected possible enhancements to data collection
 - Environmental exposures
 - Life course, adaptation
 - Medication compliance
 - Contextual data
- Linkages and data harmonization
What would you like to see added to the CLSA?

Other Ideas for Research Questions?
Funded by the Government of Canada through the CIHR and CFI, and by Provincial Governments

Transforming Everyday Life into Extraordinary Ideas

giffith@mcmaster.ca
www.clsa-elcv.ca