Canadian Longitudinal Study on Aging: Advancing the Science of Population Health and Aging through Interdisciplinary Research

Parminder Raina, PhD
Canada Research Chair in GeroScience
Raymond and Margaret Labarge Chair in Optimal Aging
Professor, Department of Clinical Epidemiology and Biostatistics, Faculty of Health Sciences, McMaster University, Hamilton

Toronto, ON, May 26th, 2011
Population aging

- Due to declining fertility and increasing longevity (demographic transition)
- Unprecedented, accelerating, shifts will be permanent
- Profound implications for human life, including health
Population Totals in Canada by Age Group and Year

<table>
<thead>
<tr>
<th>AGE</th>
<th>MALES</th>
<th>BOTH SEXES</th>
<th>FEMALES</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-4</td>
<td>1000393</td>
<td>1553280</td>
<td>952887</td>
</tr>
<tr>
<td>5-9</td>
<td>998293</td>
<td>1553079</td>
<td>954786</td>
</tr>
<tr>
<td>10-14</td>
<td>980292</td>
<td>1512979</td>
<td>932687</td>
</tr>
<tr>
<td>15-19</td>
<td>984993</td>
<td>1925780</td>
<td>940787</td>
</tr>
<tr>
<td>20-24</td>
<td>1067593</td>
<td>2108978</td>
<td>1041385</td>
</tr>
<tr>
<td>25-29</td>
<td>1282190</td>
<td>2528572</td>
<td>1246382</td>
</tr>
<tr>
<td>30-34</td>
<td>1311991</td>
<td>2597873</td>
<td>1285882</td>
</tr>
<tr>
<td>35-39</td>
<td>1173491</td>
<td>2344675</td>
<td>1171184</td>
</tr>
<tr>
<td>40-44</td>
<td>1076892</td>
<td>2138777</td>
<td>1061885</td>
</tr>
<tr>
<td>45-49</td>
<td>844194</td>
<td>1674182</td>
<td>829988</td>
</tr>
<tr>
<td>50-54</td>
<td>673295</td>
<td>1339986</td>
<td>666691</td>
</tr>
<tr>
<td>55-59</td>
<td>618096</td>
<td>1238387</td>
<td>620291</td>
</tr>
<tr>
<td>60-64</td>
<td>578596</td>
<td>1190087</td>
<td>611491</td>
</tr>
<tr>
<td>65-69</td>
<td>497996</td>
<td>1084588</td>
<td>586592</td>
</tr>
<tr>
<td>70-74</td>
<td>364298</td>
<td>833991</td>
<td>469693</td>
</tr>
<tr>
<td>75-79</td>
<td>255599</td>
<td>622194</td>
<td>366595</td>
</tr>
<tr>
<td>80+</td>
<td>229898</td>
<td>670192</td>
<td>440294</td>
</tr>
</tbody>
</table>

1991 Totals:
- MALES: 13938100
- BOTH SEXES: 28117600
- FEMALES: 14179500
Rectangularization of the survival curve
Compression of morbidity

- Morbidity compressed into a short period prior to death
- Represented an important shift in thinking
- Departure from the medical model of aging, which assumed that death always occurred as a result of a disease process, and that older age was a period of inevitable decline

Figure: Mortality According to Age in the Absence of Premature Death
Compression of morbidity

Fries’ paradigm based on the premise that:

- The length of human life is fixed
- Chronic disease can be postponed
- Predicted that the increase in life expectancy would plateau in the coming decades, particularly life expectancy from age 65 which excludes early life mortality
Distribution of life table deaths

- U.S. females
 - 1900
 - 1985
 - Theoretical

Life expectancy at birth (U.S. 1900)

Life expectancy at birth (U.S. 1988)

Range of theoretical estimates for average life-span

Verified longest lived individual as of 1990
Evidence suggests otherwise

- Is average life expectancy approaching an upper limit to life expectancy?
 - the evidence that the average life span is 85 years is unconvincing
 - there is no evidence for further rectangularization of survival curves

- Will age at first infirmity increase?
 - there is no evidence for over-all declines in incidence of morbidity: on the contrary
 - evidence for actual “(de)compression” of morbidity is ambiguous
Historical increases of life expectancy
Oopen and Vaupel, Science 2002; C Finch adaptation

Phase 1
early urban

Phase 2
sanitation-nutrition

Phase 3?
regeneration
modern medicine
Social Policy Innovation

Life-expectancy in years

1550 1600 1650 1700 1750 1800 1850 1900 1950 2000 2050

- England
- Norway
- New Zealand
- Iceland
- Netherlands
- Sweden
- Japan
Demographic Futures

- Upward trend in life expectancy continue, cease, or reverse?
 + Effective interventions against age-related diseases
 + Improved environment for ageing
 + Life-cycle deceleration (delayed reproduction)

- Adverse effects of excess nutrition
- Adverse effects of alcohol and drug abuse
- Adverse effects of increasingly sedentary lifestyles
- Life-cycle acceleration (early maturation)
Why aging occurs

Intrinsic

Extrinsic

How aging is caused
Genes Associated With Avoiding Late-Life Disease in Humans

<table>
<thead>
<tr>
<th>GENE</th>
<th>BIOCHEMICAL FUNCTION</th>
<th>COMMENTS</th>
<th>REFERENCES</th>
</tr>
</thead>
<tbody>
<tr>
<td>APOE</td>
<td>Lipoprotein metabolism</td>
<td>E2 variant is frequent in centenarians while E4 variant as a risk factor for Alzheimer’s disease is rare in centenarians.</td>
<td>Schachter et al. 1994</td>
</tr>
<tr>
<td>ACE</td>
<td>Angiotensin-converting enzyme</td>
<td>Plays a role in regulating blood pressure.</td>
<td>Schachter et al. 1994</td>
</tr>
<tr>
<td>PAI1</td>
<td>Plasminogen activator inhibitor 1</td>
<td>Plays a role in blood clotting, thus affecting risk of stroke and heart attack.</td>
<td>Mannucci et al. 1997</td>
</tr>
<tr>
<td>HLA-DR</td>
<td>Histocompatibility locus antigen</td>
<td>DR variant is frequent in centenarians; resists infection and inflammation?</td>
<td>Ivanova et al. 1998</td>
</tr>
<tr>
<td>WRN</td>
<td>Possesses both DNA helicase and exonuclease activity</td>
<td>Gene responsible for Werner’s Syndrome; mutation leads to a variety of aging-related pathologies, e.g., cataracts, cancer, osteoporosis, slow wound healing, etc.</td>
<td>Yu et al. 1996, Huang et al. 1998, Martin and Oshima 2000</td>
</tr>
<tr>
<td>B3AR</td>
<td>B-3 adrenergic receptor</td>
<td>Allelic form present affects time of onset of Type 2 diabetes.</td>
<td>Walston et al. 1995</td>
</tr>
<tr>
<td>MTHFR</td>
<td>5-, 10-methylenetetrahydrofolate reductase</td>
<td>Deficiency leads to increased levels of homocysteine and DNA hypomethylation; increases risk of cardiovascular disease and cancer.</td>
<td>Heijmans et al. 2000</td>
</tr>
<tr>
<td>KLOTHO</td>
<td>Membrane protein with (\beta)-glucosidase activity?</td>
<td>Homozygous variant form is underrepresented in elderly individuals.</td>
<td>Arking et al. 2002</td>
</tr>
</tbody>
</table>
Genetic Heritability of Human Lifespan

Cournil & Kirkwood *Trends in Genetics* 2001

Twin Studies
- McGue et al (1993) 0.22
- Herskind et al (1996) 0.25
- Ljungquist et al (1998) <0.33

Traditional Family Studies
- Philippe (1978) 0-0.24
- Bocquet-Appel & Jakobi (1990) 0.10-0.30
- Mayer (1990) 0.10-0.33
- Gavrilova et al (1998) 0.18-0.58
- Cournil et al (2000) 0.27

Genes account for 25% of what determines disease and longevity
EPIGENETICS

ON/OFF SWITCH (GENE)

GUMMED UP ON/OFF SWITCH (GENE)

CANNOT

CAN

DNA AND CHROMOSOME LEVELS

30 nm fiber 10 nm fiber

CAN

CANNOT

HAc

Me

Me-

GUM

GUM

-HAc

Me-
Non-Biological/Medical Determinants of Aging?

- Nutrition
- Lifestyle
- Environment
 - Physical
 - Social
 - Economic
 - Work Place
 - Psychological
- Chance
Intrinsic and Extrinsic Factors

Environmental influences
(e.g., rural, socio-economic, exercise, nutrition)

Chronic diseases
(e.g., diabetes, cancer, dementia, arthritis, cardio)

Aging

Genetics
(e.g., telomeres/oxidative stress, psychological & cognitive abilities, immune functions)

Health Services Utilization

Time (Longitudinal Study)
The Canadian Longitudinal Study on Aging (CLSA)

A key strategic initiative of CIHR

The Canadian Longitudinal Study on Aging

More than 160 researchers - 26 institutions

Multidisciplinary - biology, genetics, medicine, psychology, sociology, demography, economics, epidemiology, nursing, nutrition, health services, biostatistics, population health
CLSA- The Concept

The Vision

A research platform - infrastructure to enable state-of-the-art interdisciplinary population based research and evidenced-based decision making.

The Aim

To study aging as a dynamic process and the inter-relationship among intrinsic and extrinsic factors from mid life to older age.
Innovation - Cell to Society

Mid life to old age
Quantitative traits
 - Physical
 - Social
 - Psychological
Gene-environment interactions
Disease, disability, psychosocial consequences
Adaptation
Overall Aims of the CLSA

- The progression of **health** from middle-age to early old age to older old age
- The determinants of **well-being** and quality of life
- Risk Factors (including genetics) of **Chronic diseases**
- **Cognitive functioning** and mental health
- **Disability** and the compression of morbidity
- The examination of socioeconomic and health **inequalities** in an aging population
- **Social participation, social relationships and care giving** in an aging population
- **Retirement** and **post retirement** labor market activity
CLSA Architecture

In-depth data collection on 50,000 (at 11 sites)
Questionnaires, Database linkage
Follow-up over 20 years
Every 3 years age 45-85
Sampling and Subject Selection

CLSA collaborated with Statistics Canada to develop Sampling Strategy

- **Target population:** People aged 45-85 living in private occupied dwellings in the ten provinces

- **Excluded:**
 - Residents of the three territories
 - Persons living on Indian reserves or Crown lands
 - Persons living in institutions
 - Full-time members of the Canadian Forces
 - Residents of some remote regions
CLSA – CCHS Healthy Aging

Multi-stage sampling

- Sampling frame 2006 Census
- Selection
 - Clusters based on Census dissemination area blocks
 - Dwellings within cluster
 - Person within dwelling
- Response Rate
 - Household-level 80.8%
 - Person-level 92.1%
 - Overall 74.4%
Participants were asked to share:
- Their contact information with the CLSA (for recruitment)
- Their survey responses with the CLSA (for analysis)

20,087 (76.3%) of Eligible Participants provided data to CLSA

N=30,865
- >85 N=4,617
- 45-85
 - N=11,742 (Contact + Survey)
 - N=8,345 (Survey Only)
 - N=527 (Contact Only)
 - N=5,634 (Neither)
Aims of sampling

- Choose representative sample of eligible Canadians
 - 20K Tracking cohort; 30K Comprehensive cohort
 - Specified numbers in age-sex groups by province

- Options for methods of selection:
 - Using provincial health registries
 - Random digit dialing

- In Alberta and maybe BC, it appears we cannot use registries
Example of requirement by province
Tracking cohort

<table>
<thead>
<tr>
<th>Alberta</th>
<th>45-54</th>
<th>55-64</th>
<th>65-74</th>
<th>75-85</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>M</td>
<td>F</td>
<td>M</td>
<td>F</td>
<td>M</td>
</tr>
<tr>
<td># Required</td>
<td>306</td>
<td>306</td>
<td>306</td>
<td>306</td>
<td>204</td>
</tr>
<tr>
<td># Providing Contact Info</td>
<td>121</td>
<td>128</td>
<td>153</td>
<td>193</td>
<td>108</td>
</tr>
<tr>
<td># Anticipated through CCHS</td>
<td>28</td>
<td>35</td>
<td>56</td>
<td>82</td>
<td>53</td>
</tr>
<tr>
<td># Additional Participants</td>
<td>278</td>
<td>271</td>
<td>250</td>
<td>224</td>
<td>151</td>
</tr>
<tr>
<td># Need to Sample*</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>

* This will depend on the recruitment rate per number sampled
RDD approach

- Randomly sample numbers as far as possible in specified area codes and with next 3 digits in relevant area
- Identify eligible people at that number
- Randomly choose one person
- Recruit willing participants
Issues in using RDD

- Identifying numbers in specified area
- Having up-to-date list of numbers
- Ability to compute sample weights
- Presence of landlines and/or cellphones
- Eligibility within household – changes over time
- Method of initial contact
- Households without phones
- Numbers may be businesses, out of order, etc.
- People away from home (snowbirds, etc.)
Obtaining lists of numbers

- Commercial organization, ASDE, in Quebec
- Can supply randomly chosen numbers
- Will state recency of population list of numbers
- If number is ‘listed’, can provide name and address attached to number (harder for cellphones)
- We are recruiting over 3 years, we will need ‘refreshed’ lists every so often
- Might over-sample in areas with many older people
Cell phones and landlines

- Statistics Canada survey December 2010
- Supplement to Labour Force Survey
- Households using cellphones exclusively:
 - Overall: 13%
 - Age 18-34 50%
 - Over 35 8%
 - Over 55 4%
- Increasing over time
- Landlines reach nearly all our eligibles
Combining samples from cellphones and landlines

- Methods have been described
- Need to determine all phones in each household
- Keep logs of unfilled quotas (age-sex numbers)
- Interviewers construct rosters of eligibles within households and randomly choose one
Some issues with cell phones

- **Ethical:** incoming calls may cost user; privacy; activity when answering (driving, etc); children
- **Cost:** AAPOR states at least 2x, maybe 3-4x cost of landline survey
- **Getting addresses**
- **Quality of data (may be similar to landlines)**

Source: AAPOR
‘Cold calling’ vs prior contact/letters

- Time and expense of mailing letters (only possible when we have name and address)
- May increase willingness to talk to interviewers (call display)
- Perhaps try both initially and then move to using one
Contacting subjects

- On average, anticipate making many calls to recruit a single person
 - Up to 7-10 calls to obtain response
 - Leave message?
 - Willingness to participate

- Working on assumption of 20% ‘recruitment rate’ for health registry data
 (15% in 75-85 age group)

- Exclude households without a phone
Some questions

- How often should we refresh samples of numbers?
- Should we try both cold calling and prior contact?
- Is it OK to exclude households without a phone?
- Should we leave a message after n calls fail to contact anyone at the number?
- Should we exclude cell phones?
Depth and Breadth of CLSA

PHYSICAL & COGNITIVE MEASUREMENTS
- Height, Weight
- Waist and hip measurements
- Bioimpedence
- Arterial pressure
- Mean heart rate
- Grip strength, timed up-and-go, chair raise, 4-m walk
- Standing balance
- Vision
- Hearing
- Spirometry
- Bone density
- Aortic calcification
- ECG
- Carotid intima-media thickness
- Cognitive Assessment

HEALTH INFORMATION
- Chronic disease symptoms (11 chronic conditions)
- Medication intake & Compliance
- Women’s health
- Self reported Health service use
- Oral health
- Preventative Health
- Administrative data Linkage Health Services & Drugs
- Other Administrative Data bases

PSYCHOSOCIAL
- Social participation
- Social networks and support
- Care giving and Care receiving
- Mood, Psychological distress
- Coping, Adaptation
- Work to retirement transitions
- Job-Demand/Effort Reward
- Retirement Planning
- Social Inequalities
- Mobility-Lifespace
- Built Environments
- Wealth

LIFESTYLE & SOCIODEMOGRAPHIC
- Smoking
- Alcohol consumption
- Physical activity
- Nutrition
- Birth location
- Ethnicity/Race/Gender
- Marital status
- Education
- Income

Canadian Longitudinal Study on Aging
Etude longitudinale canadienne sur le vieillissement
Biological Samples

BIOCHEMICAL & HEMATOLOGICAL ANALYSIS (50 ml Blood; Urine)

General Hematology
- Basophils
- Eosinophils
- Neutrophils
- Lymphocytes
- Monocytes
- White blood count
- Red blood cells
- Hemoglobin
- Platelets

Lipid Profile
- HDL-cholesterol
- LDL-cholesterol
- Tryglycerides
- Glucose
- Fasting blood sugar

Genetic and Epigenetic Markers
Data Collection Overview

Potential Participants Sent Study Information

Participants Consent to Participate in CLSA

Participants Provide Questionnaire Data (n=50,000)

Physical/Psychological Data
- Neuropsychological Battery
- Performance Testing
- Anthropometric Measures
- Full body Bone Density
- Aortic Calcification
- ECG
- Carotid Intimal-Medial Thickness
- Pulmonary Function
- Vision and Hearing

Biological Data
- Blood
- Urine

Biological Data Stored in Biobank (BBC) and Biomarker analysis

n=30,000 Home Interview

n=20,000 Telephone interview

Questionnaire Data Processed

Stored in (NCC/SAC)
Participants (50,000) -> Enrolled

Questionnaire Data (50,000)

Physical Exam and Biological Specimen (30,000)

Active Follow-up (F) Every 3 years
- Questionnaire
- Physical exam
- Biological samples

Maintaining Contact Interview (MC) mid-wave
- Update contact information
- Short Questionnaire

Passive Follow-up Every 3 years
- Health care utilization
- Disease registries
- Mortality databases

Data and Biological Sample Repositories

Researchers
Example

Physical Function
Mobility
Mobility «activity & participation»

Examples of precursors

Individual (or intrinsic)
- Chronic diseases (e.g., osteoarthritis)
- Neuropsychological conditions
- Cognition/Perceived health
- Medication use/Pain/Dizziness
 - Poor vision
 - Fear of falling/
- Obesity/Nutrition/weight loss/appetite
- Physical activity/fitness/strength
- Functional performance (measured & reported)
 - Alcohol use
- Biomarkers (inflammation, hormonal, metabolism, genetics, epigenetics)
 - Personality

Contextual (or extrinsic or environmental)
- Social participation
- Transportation resources
- Community/neighborhood characteristics
- Social network/support

Examples of consequences

Diseases
- Osteoporosis, sarcopenia

Physical Health
- Injuries/Frailty/Disability
- Poor nutrition status

Psychological Health
- Psychological distress
 - Quality of life
 - Loneliness
 - Unmet needs

Social Health
- Social participation/engagement/capital
- Work Transitions
- Unmet needs
- Institutionalization
Mobility as a precursor:

Is mobility in mid- and later life associated with physical, psychological and social functioning? Specifically:

- How do changes in mobility impact upon indicators of psychological health including, depression, psychological distress, satisfaction with life, adjusting for other factors?
Mobility

Mobility as a mediator:

How does mobility in mid- and later life mediate relationships between determinants of health and health outcomes? Specifically:

– How does compromised mobility mediate the relationship between income and health?
Mobility

Mobility as an outcome:
How do physical, psychological, and social functioning in mid- and later life relate to changes in mobility?
Specifically:

- What is the relationship between inflammatory biomarkers (e.g., IL-6, C reactive protein, albumin), hormonal biomarkers (e.g., IGF-1, T3, T4), metabolic (e.g., fasting glucose, cholesterol) or immunological markers (TNFα), oxidative stress (e.g. vitamin E and C), vitamin D, and (Epi) genetic markers (e.g., IGF-I and Apo-E) and changes in mobility and how is this relationship is modified by SES?

- What is the relationship between neighbourhood deprivation and incident mobility disability in aging population?
Implementation Plans for Tracking Cohort of the CLSA (n=20,000)
Launch of the CLSA

- First selection of 20,000 started in late 2008 in collaboration with Statistics Canada CCHS Healthy Aging module (Tracking Cohort)
 - Approximately 12,500 have agreed to release their names to CLSA (5000 have been recruited)
- Remaining 15,000 for Tracking Cohort will be recruited in mid-2011
- Remaining 30,000 will be recruited in late 2011 (Comprehensive Cohort)
 - Provincial Client Registries or Random digit Dialing
Implementation Plans for Comprehensive Cohort of the CLSA (n=30,000)
Implementation Plan for the Comprehensive Cohort (n=30,000)

- Cohort of 30,000 persons to be recruited within 25 to 50 km radius of 11 data collection sites (DCS)
 - Victoria (3000), Vancouver (1500), Burnaby (1500), Calgary (3000), Winnipeg (3000), Hamilton (3000), Ottawa (3000), Montreal (3000), Sherbrooke (3000), Halifax (3000), St. John’s (3000)
Comprehensive Cohort Rolling Recruitment

- First batch of 1000 people to be recruited/site (mid-2011 to mid-2012)
 - Maintaining contact by phone (end of 2012-end 2013)

- Second batch of 1000 people to be recruited/site (mid-2012 to mid-2013)
 - Maintaining contact: (end of 2013-end of 2014)

- Third batch of 1000 people to be recruited/site (mid-2013 to mid 2014)
 - Maintaining contact: (end of 2014-end of 2015)
Effective Design
- Multidisciplinary Team
- Key initiative of CIHR
- Governance Structure
- Longitudinal Design
- Random selection
- Extensive data
- Extensive feasibility work
- Transparent data access policies
- Simple IP policy
- Harmonization with international cohorts
- State of the art facilities
 - Bio-repository
 - High Throughput biomarker labs
 - Statistical Analysis centre
 - Bioinformatics
 - Fully equipped data collection facilities

Strong Scientific Program
- Healthy Aging
 - Association studies based on candidate genes & diseases-related QTs
- Unique Approach:
 - Chronic conditions as Precursor, mediator Outcome
 - Binary outcomes and quantitative traits
- Quality of life
- Chronic disease management
- Risk factor identification
- Psychosocial aspects of Health
- Environment & Health
- Methodological development
 - Statistical modelling
 - Biological sample collection and storage

Resource for the future
- CFI-funded research facilities
- Supporting biomarker discovery research
- Supporting and developing complex diseases screening methodologies
- Personalized medicine
- Informing health & Social care policy
- Commercialization
- Building research capacity
- Platform for sub-studies
- Advancing Science of Aging
- Improving the health of Canadians