

Transforming Everyday Life into Extraordinary Ideas

Canadian Longitudinal Study on Aging: Advancing the Science of Population Health and Aging through Interdisciplinary Research

Parminder Raina, PhD

Canada Research Chair in GeroScience
Raymond and Margaret Labarge Chair in Optimal Aging
Professor, Department of Clinical Epidemiology and
Biostatistics, Faculty of Health Sciences,
McMaster University, Hamilton

Vancouver, April 2012

Population aging

- Due to declining fertility and increasing longevity (demographic transition)
- Unprecedented, accelerating, shifts will be permanent
- Profound implications for human life, including health

Population Totals in Canada by Age Group and Year

Rectangularization of the survival curve

FURTHER INCREASE IN LIFE EXPECTANCY

Squaring the survival curve

JAMES F. FRIES, M.D., THE NEW ENGLAND JOURNAL OF MEDICINE, JULY 17, 1980,

Figure: Mortality According to Age in the Absense of Premature Death

- Morbidity compressed into a short period prior to death
- Represented an important shift in thinking
- Departure from the medical model of aging, which assumed that death always occurred as a result of a disease process, and that older age was a period of inevitable decline

Compression of morbidity

Fries' paradigm based on the premise that:

- The length of human life is fixed AND
- Chronic disease can be postponed
- Predicted that the increase in life expectancy would plateau in the coming decades, particularly life expectancy from age 65 which excludes early life mortality

Distribution of life table deaths

Evidence suggests otherwise

- Is average life expectancy approaching an upper limit to life expectancy?
 - ▶ the evidence that the average life span is 85 years is unconvincing
 - there is no evidence for further rectangularization of survival curves
- Will age at first infirmity increase?
 - there is no evidence for over-all declines in incidence of morbidity: on the contrary
 - evidence for actual "(de)compression" of morbidity is ambiguous

Historical increases of life expectancy Oepen and Vaupel, Science 2002; C Finch adaptation

Demographic Futures

- Upward trend in life expectancy continue, cease, or reverse?
 - Effective interventions against age-related diseases
 - Improved environment for ageing
 - Life-cycle deceleration (delayed reproduction)
 - Adverse effects of excess nutrition
 - Adverse effects of alcohol and drug abuse
 - Adverse effects of increasingly sedentary lifestyles
 - Life-cycle acceleration (early maturation)

|Why aging occurs

Intrinsic

Extrinsic

How aging is caused

Genes Associated With Avoiding Late-Life Disease in Humans

Table 4

GENE	BIOCHEMICAL FUNCTION	COMMENTS	REFERENCES
APOE	Lipoprotein metabolism	E2 variant is frequent in centenarians while E4 variant as a risk factor for Alzheimer's disease is rare in centenarians.	Schachter et al. 1994
ACE	Angiotensin-converting enzyme	Plays a role in regulating blood pressure.	Schachter et al. 1994
PAI1	Plasminogen activator inhibitor 1	Plays a role in blood clotting, thus affecting risk of stroke and heart attack.	Mannucci et al. 1997
HLA-DR	Histocompatability locus antigen	DR variant is frequent in centenarians; resists infection and inflammation?	Ivanova et al. 1998
WRN	Possesses both DNA helicase and exonuclease activity	Gene responsible for Werner's Syndrome; mutation leads to a variety of aging-related pathologies, e.g., cataracts, can- cer, osteoporosis, slow wound healing, etc.	Yu et al. 1996 Huang et al. 1998 Martin and Oshima 2000
B3AR	B-3 adrenergic receptor	Allelic form present affects time of onset of Type 2 diabetes.	Walston et al. 1995
MTHFR	5-, 10-methylenetetra- hydrofolate reductase	Deficiency leads to increased levels of homocysteine and DNA hypomethylation; increases risk of cardiovascular disease and cancer.	Heijmans et al. 2000
KLOTHO	Membrane protein with β-glucosidase activity?	Homozygous variant form is underrepresented in elderly individuals.	Arking et al. 2002

Genetic Heritability of Human Lifespan

Cournil & Kirkwood Trends in Genetics 2001

Twin Studies

McGue et al (1993)		0.22
Herskind et al (1996)	0.25	
Ljungquist et al (1998)		<0.33

Traditional Family Studies

•	Philippe (1978)	0-0.24	
	Bocquet-Appel & Jakobi (1990)	0.10-0.30	
	Mayer (1990)	0.10-0.33	
	Gavrilova et al (1998)	0.18-0.58	
	Cournil et al (2000)	0.27	

Genes account for 25% of what determines disease and longevity

Canadian Longitudinal Study on Aging Étude longitudinale canadienne sur le vieillissement

Epigenetics

30 nm fiber 10 nm fiber

DNA AND CHROMOSOME LEVELS

Non-Biological/Medical Determinants of Aging?

- Nutrition
- Lifestyle
- Environment
 - Physical
 - Social
 - Economic
 - Work Place
 - Psychological
- Chance

Intrinsic and Extrinsic Factors

Time (Longitudinal Study)

Strategic Partners

- Strategic initiative of the Canadian Institutes of Health Research (CIHR)
- Funded by CIHR and the Canada Foundation for Innovation (CFI)
- Provinces and universities across Canada

Our Vision

A research platform – infrastructure to enable state-of-the-art, interdisciplinary population-based research and evidenced-based decision-making that will lead to better health and quality of life for Canadians.

Our Aim

To study aging as a dynamic process and the inter-relationship among intrinsic and extrinsic factors from mid-life to older age.

Innovation - Cell to Society

- Mid life to old age
- Quantitative traits
 - Physical
 - Social
 - Psychological
- Gene-environment interactions
- Disease, disability, psychosocial consequences

Interdisciplinary Research Agenda

Overall Goals of the CLSA

- The progression of health from middle-age to early old age to older old age
- The determinants of well-being and quality of life
- Risk factors (including genetics) of chronic diseases
 - Cardiovascular, Cerebrovascular, Neurological, Respiratory, Vision and Hearing, Diabetes, Renal, Metabolic, Cancer, Osteoarthritis, Osteoporosis, Depression, Musculoskeletal, Cancer
- Cognitive functioning and mental health
- Disability and the compression of morbidity
- The examination of socioeconomic and health inequalities in an aging population
- Social participation, social relationships and caregiving in an aging population
- Retirement and post-retirement labour market activity

Depth and Breadth of CLSA

PHYSICAL & COGNITIVE MEASUREMENTS

- Height & weight
- Waist and hip measurements
- Bioimpedence
- Arterial pressure
- Mean heart rate
- Grip strength, timed up-and-go, chair raise, 4-m walk
- Standing balance
- Vision
- Hearing
- Spirometry
- Bone density
- Aortic calcification
- ECG
- Carotid intima-media thickness
- Cognitive assessment

HEALTH INFORMATION

- Chronic disease symptoms (11 chronic conditions)
- Medication intake & compliance
- Women's health
- Self-reported health service use
- Oral health
- Preventative health
- Administrative data linkage health services & drugs
- Other administrative databases

PSYCHOSOCIAL

- Social participation
- Social networks and support
- Caregiving and care receiving
- Mood, psychological distress
- Coping, adaptation
- Work-to-retirement transitions
- Job-demand/effort reward
- Retirement planning
- Social inequalities
- Mobility-lifespace
- Built environments
- Wealth

LIFESTYLE & SOCIODEMOGRAPHIC

- Smoking
- Alcohol consumption
- Physical activity
- Nutrition
- Birth location
- Ethnicity/race/gender
- Marital status
- Education
- Income

Canadian Longitudinal Study on Aging Étude longitudinale canadienne sur le vieillissement

Equipment and Infrastructure Supporting Research on Aging

Computer-Assisted Telephone Interview Centres

Collect health and psychosocial data (located in Halifax and Sherbrooke).

Data Collection Centres

collection of nutrition, physical, clinical data, & biological specimens.

National Coordinating Centre

Oversight, project management, data management, communication for overall initiative

(located in Hamilton)

M

Centre

Biological Processing

Bio-banking, biomarker discovery & analysis (located in Hamilton).

Genetics and Epigenetics Centre

Genotyping, epigenetic analysis, and bioinformatics, (located in Vancouver)

Statistical Analysis Centre

assimilation, distribution and analysis of of all CLSA data (located in Montreal).

Canadian Longitudinal Study on Aging Étude longitudinale canadienne sur le vieillissement

CLSA Data Collection

Participants Participants Provide Potential Consent to **Questionnaire Data Participants Sent** Participate in **Study Information** (n=50,000)CLSA Physical/Psychological Data n=30,000n=20,000Neuropsychological Battery Performance Testing **Biological Data** Anthropometric Measures Home Interview Blood Bone Density, Body Composition Urine Aortic Calcification • FCG Carotid Intimal-Medial Thickness Telephone interview Pulmonary Function Vision and Hearing Questionnaire Stored in Stored in **Data Processed** Biorepository and (NCC/SAC) **Bioanalysis** Centre (BBC)

Canadian Longitudinal Study on Aging

Étude longitudinale canadienne sur le vieillissement

Achievements

- Set up of CATI
- Successful DCS set up and pilot studies
- Infrastructure / IT Design
- Coordinated purchasing process
- Software development
- Coordinated REB process
- Partnership MOH/Data Stewards

Participant Recruitment

Tracking Cohort Timeline (2009-2015)

Comprehensive Cohort Timeline (2009-2015)

Launch of the CLSA

- First selection of 20,000 started in late 2008 in collaboration with Statistics Canada CCHS Healthy Aging module (Tracking cohort)
 - ✓ Approximately 12,500 have agreed to release their names to CLSA (5,000 have been recruited)
- Remaining 15,000 for Tracking cohort are currently being recruited; to be completed late 2012
 - ✓ Provincial Client Registries or Random Digit Dialing
- Recruitment for remaining 30,000 started in early 2012 (Comprehensive cohort); to be completed early 2015
 - ✓ Provincial Client Registries or Random Digit Dialing

Diabetes Algorithm

Example

Physical Function Mobility

Mobility

«activity & participation» *

Examples of precursors

Individual (or intrinsic)

Chronic diseases (eg osteoarthritis)
Neuropsychological conditions
Cognition/Perceived health
Medication use/Pain/ Dizziness
Poor vision
Fear of falling/

Obesity/Nutrition/weight loss/appetite
Physical activity/fitness/strength
Functional performance (measured & reported)
Alcohol use
Biomarkers (inflammation, hormonal, metabolism,

Biomarkers (inflammation, hormonal, metabolism, genetics, epigenetics)

Personality

Contextual (or extrinsic or environmental)
Social partcipation
Transportation resources
Community/neighbourhood characteristics
Social network/support

Examples of consequences

Diseases

Osteoporosis, sarcopenia

Physical Health

Injuries/Frailty/Disability

Poor nutrition status

Psychological Health

Psychological distress

Quality of life

Loneliness

Unmet needs

Social Health

Social participation/engagement/capital

Work Transitions

Unmet needs

Institutionalization

Mobility

Mobility as a precursor:

Is mobility in mid- and later life associated with physical, psychological and social functioning? Specifically:

How do changes in mobility impact upon indicators of psychological health including, depression, psychological distress, satisfaction with life, adjusting for other factors?

Mobility

Mobility as a mediator:

How does mobility in mid- and later life mediate relationships between determinants of health and health outcomes? Specifically:

 How does compromised mobility mediate the relationship between income and health?

Mobility

Mobility as an outcome:

How do physical, psychological, and social functioning in mid- and later life relate to changes in mobility? Specifically:

- What is the relationship between inflammatory biomarkers (e.g., IL-6, C reactive protein, albumin), hormonal biomarkers (e.g., IGF-1, T3, T4), metabolic (e.g., fasting glucose, cholesterol) or immunological markers (TNFα), oxidative stress (e.g. vitamin E and C), vitamin D, and (Epi) genetic markers (e.g., IGF-I and Apo-E) and changes in mobility and how is this relationship is modified by SES?
- What is the relationship between neighbourhood deprivation and incident mobility disability in aging population?

Data Collection Sites (DCS)

11 ACROSS CANADA

- § 5 participants per day (40 weeks)
- § 50 mL blood
- **§ Urine sample**
- § Hematology tests (AcT DIFF, Beckman Coulter)

Storage System

Tubes

- § 500-μL V bottom, screw- top tubes (Matrix Tubes, Thermo Fisher Scientific)
- **§ Open-bottomed boxes for fast scanning**
- § Standard 96 well format
- § Potential for 'pick and place' robotic retrieval and storage box compression ('defragging')

Microwell Plates

- § 3-section GenPlates (Genvault) with FTA paper
- § Standard 96 well format
- § Dried overnight in GenVault FastDryer and sealed with an adhesive foibover

Bio specimens 42 aliquots per participant

Shipping

Matrix boxes

- § Pre-charged vapor shippers (-160°C)
- **§ Weekly shipments to BBC (overnight courier)**
- **§ Equipped with data loggers**

GenPlates

§ Envelopes with dessicant

Quality

Standard protocol to minimize process variation

Supplies

- § Received by the BBC and packaged for monthly shipments to the DCS
- § Barcode labels for supplies generated at BBC
- § Lot numbers and expiry dates tracked centrally

Biospecimens

- § Scanned at each stage of processing and handling to provide a detailed history of the biospecimen
- § Characteristics of samples documented
- § Sample integrity maximized
 - Maximum time from collection to storage is 2 h
 - o Storage at −160°C

Biorepository and Bioanalysis Centre (BBC)

HAMILTON

Biorepository

- § 31 nitrogen tanks (5 million aliquots)
- § Autofilled from a bulk nitrogen tank
- § Cryocarts
- § Personal Archive, dry storage at room temperature (humidity controlled)
- § LIMS (LabWare)
- § CryoMORE, (Air Liquide) safety monitoring system

FZTZRE

Biorepository and Bioanalysis Centre (BBC)

Biorepository

- Installation May 2012
- LIMS implementation April
- Hiring BBC coordinator

CLSA by the numbers

- 50,000 participants
- 20 years to complete the study
- 57,487 Lines of code making up Sabretooth, Beartooth and Mastodon (software)
- Up to 140,000 Telephone interviews
- Up to 210,000 Home interviews
- Up to 210,000 Visits to data collection sites
- Up to 8,820,000 biospecimen aliquots
- Up to 300,000 Follow-up calls
- Up to 129 million Questions asked during telephone interviews
- Up to 219 million Data points collected during CLSA home interviews and visits to data collection sites

Étude longitudinale canadienne sur le vieillissement

Up to 348 million Anticipated number of data points
 that will form the CLSA research platform

CLSA Governance Structure

Canadian Investment

\$50M Canadian investment in national platform

- \$23.5M CIHR for 5 Years (86% of the required funding)
 - Expectation is to identify non-CIHR partners (in kind or \$\$)
- \$10M CFI for 5 Years (infrastructure)
- \$10M Provinces for 5 Years (infrastructure)
- \$6.5 M Universities and other partners

CLSA Partners

- PHAC Neurological Diseases
- PHAC Injury
- Veterans Affairs
- Statistics Canada
- Ontario Ministry of Health and Long-Term Care
- Provinces
- Universities
- Large number of in-kind contributions from vendors and suppliers

COLLABORATE AND INNOVATE

INFRASTRUCTURE

- State-of-the-art
 facilities: bio repository and bio analysis laboratories,
 fully equipped data
 collection facilities and
 call centres across
 Canada, statistical
 analysis centre,
 genetics and
 epigenetics centre
- Novel open-source software for conducting multicentre research
- Novel hardware design and architecture
- Secure data management systems to preserve participant confidentiality
- Collaboration and harmonization with other national and international cohorts

RESEARCH

- Progression and management of disease and disability
- Risk factor identification
- Co-morbidity
- Psychosocial aspects of health
- Genetic and epigenetic aspects of disease and disability
- Biospecimen and preservation research
- Biomarker discovery for early detection and management of disease
- Research platform for auxiliary studies
- Trajectories of healthy aging
- Quality of life

OUTPUTS

- Healthcare utilization patterns
- Evidence to inform health and public policy
- Personalized medicine to improve outcomes
- Development of interventions and programs
- Development of services and products
- Research capacity
- Advanced science of aging
- Improved health of Canadians

Canadian Longitudinal Study on Aging Étude longitudinale canadienne sur le vieillissement

Discussion Points

- Value of the CLSA platform
- Data access and IP policies
- Opportunities for collaboration for the core data collection CLSA
- Opportunities for analyses of the data and biological samples
- Opportunities for using CLSA facilities for non-CLSA research
- Opportunities for sub-studies

CLSA CORE TEAM

Lead PI	Parminder Raina (McMaster)
СО-РІ	Christina Wolfson (McGill) and Susan Kirkland (Dalhousie)
Key Senior Co-Investigators	Gerry Mugford (Memorial), Helene Payette (Sherbrooke), Ron Postuma (McGill), Larry Chambers and Vanessa Taler (Ottawa), Harry Shannon, Cynthia Balion, Christopher Patterson, Lauren Griffith and Mark Oremus (McMaster), Mary Thompson and Chang Bo (Waterloo), Margaret Penning, Holly Tuokko, (Victoria), Verena Menec (Manitoba), David Hogan (Calgary), Max Cynader, Michael Hayden and Michael Kobor (UBC) and Andrew Wister (SFU)
Scientific Working Group	See our website – www.clsa-elcv.ca

raina@mcmaster.ca

CLSA funded by the Government of Canada through CIHR and CFI, and provincial governments and universities

www.clsa-elcv.ca

www.clsa-elcv.ca

