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DNA methylation represents one of the most well-studied epigenetic marks, which has 

previously been shown to influence gene expression without altering the genomic sequence 

within an individual1,2. 

Investigating this mechanism within a population can provide insight into how the environment, 

including the process of aging, can influence cellular function and potentially an individuals’ risk 

of adverse health outcomes. In this data release, we profiled genome-wide DNA methylation in 

peripheral blood mononuclear cells (PBMCs) isolated from 1,479 selected participants enrolled 

in the Canadian Longitudinal Study on Aging (CLSA) using the Illumina Infinium 

MethylationEPIC BeadChip microarrays (hereinafter referred to as EPIC arrays). 

The EPIC arrays provide quantitative measurements of DNA methylation at 862,927 CpG sites 

and 2,932 CHH sites3. To generate these methylation raw data, genomic DNA was extracted 

from the PBMC samples and then bisulfite-converted to be used as input for the EPIC arrays. 

Once processed, the microarray chips were read using an Illumina iScan to yield raw 

methylation data in .idat file format. To facilitate ease of use for future analysts, these data were 

further preprocessed using GenomeStudio software (Illumina) which transformed the raw 

intensity values into beta values (M/(M+U)), representing a continuous value ranging from 0 to 1 

which can be interpreted as the percentage of methylation at each CpG loci present in the 

sample4. Within GenomeStudio, colour-correction and background subtraction was performed 

by employing built-in control probes measured within each sample. Data was then processed in 

the R environment for further preprocessing and normalization procedures: Following initial 

removal of four samples with low bisulfite-conversion scores (<85%), inconsistently-performing 

and non-specific probes5 

were removed as part of the initial quality control process. We then 

employed rigorous procedures based on a combination of principal components analysis (PCA), 

sample beta-value correlations, and built-in outlier detection functions in the wateRmelon and 

lumi packages to identify 29 additional outlier samples which were excluded from downstream 

preprocessing procedures. Of the remaining 1,446 samples and 783,136 probes, missing beta 

values were imputed using a k-nearest neighbor-based (imputeknn) algorithm. The imputed 

data were subsequently normalized using inter-sample (Quantile) and intra-sample (Beta-

Mixture quantile; “BMIQ”) methods6,7. Variations due to technical batch effects were corrected 

using the ComBat function based on three array-related parameters (array row, sample bisulfite 
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conversion batch, and array BeadChip)8. Finally, we computationally estimated proportions of 

six major immune cell types in each PBMC sample using the Houseman method, and adjusted 

the beta-values to remove this variation across samples using a PCA-based regression 

method9,10. 

Importantly, 16 technical replicate PBMC samples from the same individual were included in 

these arrays, each incorporated into a separate array batch. These replicates were processed in 

different DNA extraction and bisulfite conversion batches to control for technical variation from 

these procedures. The final Pearson’s correlation values for global DNA methylation between 

these technical replicates were determined to be r > 0.99 (p < 2.2x10-16), confirming the validity 

of our methods3. To further validate our data, we performed a preliminary epigenome-wide 

association study (EWAS) with the participants’ chronological age as the main effect, sex as a 

covariate, and the preprocessed DNA methylation values at each CpG (Logit-transformed to M-

values)11 as the outcome in a linear regression model. We were able to replicate previous 

findings with known aging-related CpGs annotated to genes including ELOVL212 (cg16867657: 

Δβ: 0.13, FDR:1.48x10-219; cg24724428: Δβ: 0.10, FDR:3.17x10-162; cg21572722: Δβ: 0.08, 

FDR:1.41x10-142), FHL212 (cg17268658: Δβ: 0.09, FDR:9.36x10-145; cg22454769: Δβ: 0.09, 

FDR:1.45x10-135; cg06639320: Δβ: 0.11, FDR:5.36x10-134), CILP213 (cg07544187: Δβ: 0.10, 

FDR:4.54x10-123), and CCDC102B14 (cg13552692: Δβ: -0.11, FDR:4.70x10-118; cg19283806: Δβ: 

-0.09, FDR:1.33x10-103). 

In addition, we also calculated epigenetic aging measures with DNA methylation data which was 

only colour-corrected and background-subtracted, as recommended, using the Horvath online 

DNA Methylation Age calculator software (https://dnamage.genetics.ucla.edu/home)15,16. These 

age-related variables include DNA methylation age estimates from the Horvath pan-tissue 353-

CpG epigenetic clock15, the Hannum blood-based 71-CpG epigenetic clock17, as well as 

universal, intrinsic, and extrinsic age acceleration residuals15,18,19 for each participant. 

The following data are available for access by researchers that have followed the policies and 

guidelines set forth by the CLSA:  

1. The raw DNA methylation data containing beta values from all 865,918 probes for all 1,479 

participants on the EPIC arrays (provided as .idat files or as a beta-value matrix derived 

from the MethylumiSet object in the CSV file format) 

2. The color-corrected/background-subtracted, probe-filtered, sample outlier-removed, 

normalized, batch and blood cell-type corrected beta values at 783,136 probes for 1,446 

participants as a beta-value matrix in the CSV format 

3. Epigenetic-age related measures for all 1,479 participants from the Horvath DNAmAge clock 

calculator, using the genome-studio colour-corrected and background-subtracted 

methylation data as input. 

https://dnamage.genetics.ucla.edu/home
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Appendix: Epigenetic Age-related Measures provided in this data release (also see 

references: 15-19 for more details). 

1. DNAmAge – This is the absolute DNA methylation/epigenetic age estimates calculated 

based on the Horvath 353-CpG Pan-Tissue clock sites in the units of biological years. This 

value shows high correlation with a given individual's chronological age and is in theory 

unconfounded with cell type proportions15. 

2. Age Acceleration Difference – Absolute difference between chronological age and 

DNAmAge for an individual - ie. is calculated as (DNAmAge - Chronological Age)15. 

3. Age Acceleration Residual – Represents an epigenetic age acceleration measure defined 

as residual from regressing DNAmAge on chronological age - this is typically used as the 

universal measure of epigenetic age acceleration15. 

4. Intrinsic Epigenetic Age Acceleration (IEAA) – Represents an epigenetic age 

acceleration estimate measure that is attributed to intrinsic changes within the cells 

regardless of cell type proportions in a given sample18. IEAA is measured by accounting for 

both an individual's chronological age and blood cell type proportions. 

5. Extrinsic Epigenetic Age Acceleration (EEAA) – Represents an epigenetic age 

acceleration estimate measure that is attributed to age-related changes in blood cell type 

composition18. EEAA is more related to immune system aging. 

6. Hannum Age – Epigenetic Age calculated based on 71 CpG sites as defined by Hannum et 

al.17 This clock was developed using whole blood samples. 
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