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Abstract 

DNA methylation represents one of the most well-studied epigenetic marks, which has 
previously been shown to influence gene expression without altering the genomic sequence 
within an individual. Investigating this mechanism within a population can provide insight into 
how the environment, including the process of aging, can influence cellular function and 
potentially an individuals’ risk of adverse health outcomes. In this data release, we profiled 
genome-wide DNA methylation in peripheral blood mononuclear cells (PBMCs) isolated from 
1,478 selected participants enrolled in the Canadian Longitudinal Study on Aging (CLSA) using 
the Illumina Infinium MethylationEPIC BeadChip microarrays (hereinafter referred to as EPIC 
arrays), which provides quantitative measurements of DNA methylation at 862,927 CpG sites 
and 2,932 CHH sites throughout the human genome. We performed data preprocessing that 
included sample- and array-based quality assessments, probe filtering, outlier analyses, data 
normalization, batch corrections, and cell-type estimations and adjustments. An exemplar 
epigenome-wide association study (EWAS) on chronological age using the preprocessed 
methylation data (1,445 participants, 783,136 loci) validated numerous previously reported age-
associated DNA methylation changes. In addition to the methylation raw data, we also provide 
the preprocessed methylation dataset, as well as estimated epigenetic ages calculated using 
the established Horvath and Hannum epigenetic clock algorithms in this data release. Qualified 
researchers can access this epigenetics data release via the CLSA Data Access portal. 
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1.0 INTRODUCTION 

1.1 Epigenetics and DNA methylation 

Epigenetics is broadly defined as heritable changes in gene expression without alterations in the 
underlying DNA genomic sequence1. Epigenetics manifests through several mechanisms, 
including histone modifications, non-coding RNA elements, and DNA methylation (DNAm), 
which represents one of the best studied epigenetic modification in mammals to-date2,3. DNAm 
refers to the addition of a methyl (-CH3) group, that generally occurs on the 5’ position of 
cytosines at predominantly cytosine-guanine dinucleotide (CpG) sites2,3. DNAm represents 
highly dynamic molecular marks that are associated with environmental factors, as well as 
development, health, and aging4. In fact, DNAm data has been used to train and build indices, 
often referred to as “epigenetic clocks”, that can accurately estimate an individual’s “biological 
age” that is highly correlated to their chronological age5–7. Therefore, examination of DNAm in 
population studies can shed light into mechanisms behind how the environment and the process 
of aging can influence cellular functions, and potentially health outcomes. 

Participants from the Canadian Longitudinal Study on Aging (CLSA), a national long-term study 
that follows 50,338 men and women (n = 30,097 Comprehensive cohort and n = 21,241 
Tracking cohort) between 45 and 85 years of age for at least 20 years, were selected for DNAm 
profiling for researchers to critically examine the relationship between epigenetics, biological 
aging, and health outcomes8. Of the 30,097 participants in the Comprehensive cohort at 
baseline, 23,492 participants had provided blood and urine samples and had availability of 
EDTA whole blood and Buffy coat. Of these 23,492 participants, 6,268 participants had fasted 
for 5 or more hours, and of which, 3,000 were selected for genomics and metabolomics 
analyses. Additionally, from the remaining 20,492 participants, 7,000 participants were selected 
for genomics and metabolomics analyses. Of the 10,000 participants, a sub-sample of 1,500 
participants were subsequently selected for epigenetic analysis, of which 1,478 participants 
were successfully assayed, and 1,445 participants passed stringent quality control assessments 
(Figure 1). All sample selections were made to reflect the distribution of Comprehensive cohort 
by age, sex, and data collection site. This data support document outlines the procedures 
followed to generate, quality control, and preprocess the DNAm data available in the CLSA 
epigenetics data release.  
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Figure 1. Process of selection of study participants for epigenetic analysis. 

1.2 The Illumina Infinium MethylationEPIC BeadChips 

The Illumina Infinium MethylationEPIC BeadChip arrays (hereon referred to interchangeably as 
EPIC arrays), the platform used in this study, is the latest human DNA methylation array 
developed and released by Illumina Inc9. The EPIC arrays are capable of quantitatively 
interrogating DNA methylation levels on over 850,000 CpG sites across the genome, including 
all designable RefSeq genes, with CpG Island shores, non-island CpGs, CpG islands outside of 
coding regions and miRNA promoter regions represented. In addition, non-CpG sites found to 
be differentially methylated in human stem cells, as well as regions identified in GWAS studies 
to be disease-associated, are included9. This high genomic coverage, combined with the 
capacity for high sample-throughput (96-384 samples/week) and standardized analyses 
pipelines, makes the EPIC chip the ideal platform to carry out genome-wide DNA methylation 
studies in large-scale population-based cohorts. 

1.3 About this data release 

This data release contains the raw DNA methylation data derived from peripheral blood 
mononuclear cell (PBMC) samples for 1,478 successfully assayed CLSA participants across 
865,918 total genomic sites (consisting of 862,927 CpG probes, 2,932 CHH probes and 59 SNP 
probes), quantitatively measured using the EPIC arrays. To facilitate users who are less familiar 
with DNA methylation data preprocessing, we also provide a set of beta values for 1,445 
samples at 783,136 CpGs/CHHs which passed stringent quality control assessments (described 
below) and have been subsequently batch corrected and corrected for blood cell type variations. 

The EPIC chip annotation file can be directly accessed and downloaded at 
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ftp://webdata2:webdata2@ussd-
ftp.illumina.com/downloads/productfiles/methylationEPIC/infinium-methylationepic-v-1-0-b4-
manifest-file-csv.zip10. In addition to the site-specific DNA methylation data, this data release 
also contains epigenetic age-related measurements for all 1,478 participants, calculated from 
the raw DNA methylation data that were background-subtracted and colour-corrected using 
Illumina GenomeStudio software. 

1.3.1 CLSA Epigenetic Data Files and File Formats 

The following data are available for access by researchers that have followed the policies and 
guidelines set forth by the CLSA:  

1. The raw DNA methylation data containing beta values, representing percent methylation 
(0% - 100%; scaled to a numeric value between 0 – 1) at each of the 865,918 probes for all 
1,478 participants on the EPIC arrays (provided as .idat files or as a beta-value matrix 
derived from the MethylumiSet object in the CSV file format). 

2. The color-corrected/background-subtracted, probe-filtered, sample outlier-removed, inter- 
and intra-sample normalized, batch and blood cell-type corrected beta-values at 783,136 
probes for 1,445 participants as a beta-value matrix in the CSV format. Note the 
normalization procedures do not transform the data, beta-values remain on a scale of 0-1. 

3. Epigenetic-age related measures for all 1,478 participants from the Horvath DNAmAge clock 
calculator, using the GenomeStudio colour-corrected and background-subtracted 
methylation data as input. All columns are of datatype numeric. This is a CSV file with the 
following column headings: 

1. DNAmAge – This is the absolute DNA methylation/epigenetic age estimates calculated 
based on the Horvath 353-CpG Pan-Tissue clock sites in the units of biological years. 
This value usually shows a high correlation with a given individual's chronological age 
and is in theory unconfounded with cell type proportions5. 

2. Age Acceleration Difference – Absolute difference between chronological age and 
DNAmAge for an individual – i.e., is calculated as (DNAmAge - Chronological Age). 

3. Age Acceleration Residual – Represents an epigenetic age acceleration measure 
defined as residual from regressing DNAmAge on chronological age – this is typically 
used as the universal measure of epigenetic age acceleration5. 

4. Intrinsic Epigenetic Age Acceleration (IEAA) – Represents an epigenetic age 
acceleration estimate measure that is attributed to intrinsic changes within the cells 
regardless of cell type proportions in a  given sample. IEAA is measured by accounting 
for both an individual's chronological age and blood cell type proportions11. 

5. Extrinsic Epigenetic Age Acceleration (EEAA) – Represents an epigenetic age 
acceleration estimate measure that is attributed to age-related changes in blood cell type 
composition. EEAA is more related to immune system aging11. 

6. Hannum Epigenetic Age – Epigenetic Age calculated based on 71 CpG sites as defined 
by Hannum et al. This clock was developed using whole blood  samples6.  

1.4 DNA extraction, data processing, and reporting 

1.4.1 Sample storage and DNA extraction 

Peripheral blood multinuclear cell (PBMC) fractions were isolated from whole blood draws by 
Ficoll separation, and approximately 400,000 – 1,000,000 PBMCs were aliquoted from each 

ftp://webdata2:webdata2@ussd-ftp.illumina.com/downloads/productfiles/methylationEPIC/infinium-methylationepic-v-1-0-b4-manifest-file-csv.zip
ftp://webdata2:webdata2@ussd-ftp.illumina.com/downloads/productfiles/methylationEPIC/infinium-methylationepic-v-1-0-b4-manifest-file-csv.zip
ftp://webdata2:webdata2@ussd-ftp.illumina.com/downloads/productfiles/methylationEPIC/infinium-methylationepic-v-1-0-b4-manifest-file-csv.zip


 
CLSA Data Support Document 

Genome-Wide DNA Methylation Profiling 

 

CLSA_DataSupportDoc_Epigenetics v2.0_2022Nov30 Page 7 of 31 

sample, frozen in 200µL phosphate-buffered saline (PBS) and stored in 2D barcode screw-top 
storage tubes in -80°C long-term. Samples were transferred to LN2 storage up to one week until 
shipment to the epigenomics facility, where the samples were placed into -80°C storage 
immediately upon receipt until further processing. Genomic DNA was extracted from 48 PBMC 
resuspension samples at a time using a QIAsymphony workstation. Briefly, samples were 
retrieved from the ultra-low freezer, thawed at room temperature for 5-10 minutes, then 
transferred to 2mL Sarstedt PP microtubes compatible for DNA extractions with the 
QIAsymphony workstation using the Qiagen DNA Midi kits and the custom program “BC400 
CR22014 ID2282”. Genomic DNA were eluted in 50µL of Qiagen elution buffer (EB; 10mM Tris-
Cl, pH 8.5), and quantified on a Nanodrop-8000 using 1µL from each sample. All extracted 
genomic DNA samples displayed good quality as measured by absorbance (A260/A280 = 1.6-
2.0; A260/A230 > 1.5). DNA concentrations were subsequently normalized to 20ng/µL with 
Qiagen EB and stored in -20°C until bisulfite conversion, as described in the next section. 

1.4.2 DNA methylation Arrays with EPIC Arrays 

The process of DNA methylation profiling starts with bisulfite conversion of the extracted, high-
purity genomic DNA samples. This initial step converts unmethylated cytosines to uracils, which 
further converts into thymines through polymerase chain reactions (PCRs), while leaves 
methylated cytosines intact12. The conversion of methylation status into sequence information 
leads to distinguishing reads on the EPIC arrays. Bisulfite conversions were carried out using 
the Zymo EZ DNA Methylation kits in 16 batches of ~96 samples per batch, following 
manufacturer’s instructions, using 750ng genomic DNA as input for each sample. Bisulfite-
converted DNA samples were eluted in 12µL of M-Elution buffer (Zymo), quantified using a 
Nanodrop-8000, and stored in -80°C until EPIC arrays processing. 

160ng of each bisulfite-converted DNA samples were used as the input for EPIC arrays, which 
were processed following manufacturer’s instructions, in 16 separate batches (~96 samples per 
batch, with the exception of batch 16, which contains only 80 samples). To control for data 
quality, each batch contained one control sample that was derived from a single bisulfite 
conversion reaction as a technical replicate, placed at a random position. Note, to account for 
potential positional bias throughout the experiments, all sample placements were randomized 
once at the bisulfite conversion procedure, and again during the array procedures. 

1.4.3 Data acquisition, export, and reporting 

Processed EPIC arrays were scanned using Illumina iScan and the iScan Control Software 
within 24 hours of completion of each array plate of 96 samples. The iScan reads and stores 
sample intensity information at each probe for every sample in the .idat format, which is 
provided as the raw data in this data release. Following the completion of scanning for all 
samples, all .idat files were imported into Illumina GenomeStudio software, with the colour-
correction and background-subtraction options selected. Beta-values representing the 
percentage of methylation of each probe at a given sample were calculated in GenomeStudio 
using the following formula: 

=  
𝑀𝑎𝑥(𝑆𝑖𝑔𝑛𝑎𝑙𝐵, 0)

𝑀𝑎𝑥(𝑆𝑖𝑔𝑛𝑎𝑙𝐴, 0) + 𝑀𝑎𝑥(𝑆𝑖𝑔𝑛𝑎𝑙𝐵, 0) + 100
 

 

For Infinium I assays, signal A and signal B are produced by two different bead types 
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(representing the methylated & unmethylated probes, respectively), and reported in the same 
color. For Infinium II assays, signal A corresponds to the signal in the Red channel and signal B 
corresponds to the signal in the Green channel13,14. As each probe is represented by multiple 
beads on the arrays, an average beta-value is reported for each locus. All reported beta values 
fall between the range of 0 – 1, represent percentage methylation from 0% to 100%, with no 
additional transformation procedures performed on the data. 

2.0 SAMPLE- AND MARKER-BASED QUALITY CONTROL 

In the first stage of methylation data inspection, we perform basic quality controls after Illumina 
GenomeStudio data import to determine whether any given sample has underperformed, either 
due to inadequacies of the input genomic DNA quantity/quality, or the array procedures. These 
quality parameters include: the examination of overall sample array intensities, global 
methylation profiles, probe detection-p values, performance of the control probes (focusing on 
only bisulfite conversion probes in this report). We also ascertain sample identities by metadata 
cross-validation using participant sex and genetic information. The details of these procedures 
are described in these sections. 

2.1 Sample-based quality control: Overall sample qualities 

2.1.1 Sample methylation intensity inspections 

We inspected the log-transformed median intensity values of both methylated (M) and 
unmethylated (U) channels in all samples, where good quality samples are expected to cluster 
together, and failed samples tend to cluster out and have lower median intensities. These 
intensity signals were derived from all data in the form of a collective RGChannelSet object (R 
Package: minfi; v1.30.0), which stores all raw green and red channel signal intensities of each 
sample15. Using the recommended threshold cutoff of 10.5, all samples displayed good signal 
intensities above this value. 

 

Figure 2. Median intensities (log2-transformed values) of the methylated and unmethylated signals for all 1,478 
assayed CLSA PBMC samples on the EPIC arrays. All samples passed the QC threshold of 10.5. 

2.1.2 Overall sample methylation profiles – Beta-value distributions 

To perform further quality control inspections, we first created a MethylumiSet object (R 
package: Methylumi; v2.30.0)16, which stores information including the average beta values at 
each defined probe, the PhenoData and the FeatureData (the probe annotations). We extracted 
the beta values using the betas functions and created a density plot for each sample. We 
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observe bimodal distributions for all samples, with peaks approaching beta values of 0 and 1 
(Figure 3). This is typically expected from the methylation array data and reflects the biology – 
most of the measured sites are either overall hypo-or hyper-methylated: Since the array is 
enriched for promoter-associated CpG islands and enhancers, these are typically refractory to 
DNA methylation across healthy individuals17. On the other hand, the EPIC array also targets a 
high amount of intergenic regions, which are often methylated18. Because none of the samples 
exhibit severe atypical distributions at this point, we retain all samples after this analysis. 

 
Figure 3. Beta-value distributions of all 1,478 samples represented by density plots. Each line depicts the beta-value 
profile of a unique sample, colored by the array batch in which the sample was processed. 

2.1.3 Sample average detection p-values 

The detection P-value is defined as 1 minus the P-value computed from the background model, 
characterizing the chance that the signal was distinguishable from negative controls19. We use 
the average detection P-value aggregated from all available probes as one of our first quality 
controls metrics and set an arbitrary threshold at 0.005, as recommended by Illumina. Figure 4 
shows that all of the samples assayed achieved an average detection P-value under 0.005, 
therefore, all samples are retained at this point.  

 

 
Figure 4. Average detection p-value calculated from all EPIC chip probes for all 1,478 assayed samples. Red dashed 
line indicates the quality control cutoff set at detection p = 0.005. 

2.1.4 Control probe performances & Sample bisulfite conversion efficiencies 

For comprehensive quality control purposes, we examined the set of built-in control probes 
available on the EPIC arrays. These different internal probes can be used to assess metrics that 
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are array-dependent (array staining, single-base pair extension, hybridization) and sample-
dependent (i.e., specificity)20. We note no quality outliers using these criteria (data not shown).  

An additional sample-dependent quality control is bisulfite conversion efficiency, where low 
conversion efficiency can represent a source of error in the final array analyses results. 
Therefore, we assessed the bisulfite conversion efficiency of each sample, using the bscon 
function in the R WateRmelon (v1.28.0) package, which estimates this parameter based on a 
set of built-in control probes on the arrays21. We set a stringent threshold of 85% conversion 
efficiency based on the recommendation of Wong et al.22, and identified four samples that fell 
below this standard (Figure 5): 54, 752, 946, and 1341. These four samples were filtered out 
and excluded from the downstream preprocessing. 

 

Figure 5. Bisulfite conversion efficiency of all 1,478 assayed samples inferred from the control probes as calculated 
by the bscon function in the wateRmelon package. Red dashed line indicates the quality control cutoff set at 85%. 
Four samples below this threshold are flagged in red. 

2.1.5 Control sample performances: Correlations & multi-dimensional scaling 

We examined the Pearson’s pairwise correlation coefficients between the 16 control samples 
that were run throughout the experiment (one per batch of 96 samples). The resulting coefficient 
values when comparing each of the replicates to replicate 1 in the first array batch were all 
greater than r = 0.9967 (equivalent to R2 > 99.3%), well above the expected 98% as advised by 
Illumina9. All other samples show Pearson’s correlations of r <0.9917 (Figure 6A). 

Lastly, we carried out multi-dimensional scaling (MDS) on the raw methylation data to infer 
sample relations. This was done with the plotSampleRelation function in the Lumi package 
(v2.36.0)23. A plot of the top two principal components show that methylation data is mainly 
segregated by sample sex on principal component 2, which accounts for 12.4% of the 
methylation variance. As expected, the 16 control samples are clustered tightly together, 
confirming the robustness in the array results and the consistency between the different array 
runs (Figure 6B). 
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Figure 6. Performances of the control samples in the CLSA DNAm array dataset. A) A dot plot showing Pearson’s 
pairwise correlation values of each sample, computed from all available beta-values, using the control sample on 
plate 1 as reference. Green dashed line: r = 0.995. B) A plot showing the top two principal components derived from 
the MDS algorithm on all CLSA samples using raw DNA methylation data. Each dot represents a unique sample 
colored by participant sex information, and control sample status. 

2.2 Sample-based quality control: Sample identity matching 

2.2.1 Sex matching 

Global methylation profiles specific to the X chromosome exhibit dimorphic patterns in males 
versus females. It is known that in biological females, >60% probes exhibit intermediate 
methylation (beta value between 0.2 and 0.7) regardless of cell types, leading to a global 
trimodal beta-value distribution24. Biological males, on the other hand, display low methylation 
levels in a majority of these probes and an overall bimodal distribution24. In addition, we would 
expect biological females to display non-specific methylation on Y-chromosomal probes as they 
are absent, while exhibiting the expected bimodal distributions in males. We found almost all 
assayed individuals matched in biological sex based on the sex chromosome beta-value 
distribution patterns, with the exception of two samples: Samples #918 and #1057, both of 
which exhibited a “female-like” X-chromosome but a “male-like” Y-chromosome methylation 
profile (Figure 7). Because these findings do not suggest a complete mismatch (importantly, 
they matched by SNPs, as discussed in the next section), but rather the possibility of 
trisomy of the sex chromosomes (i.e., XXY), and these samples showed the typical bimodal 
distributions in the autosomes, we flagged these two samples but have left them in for sample 
preprocessing. Note that depending on the users’ study questions and analysis models, they 
can decide whether these samples should be included in their studies at their own discretions.  

  

A) B) 
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Figure 7. Beta-value distribution of DNA methylation on the X and Y chromosomes of all 1,478 participants in the 
CLSA study cohort. A) A density plot showing beta-value distributions of each sample on the X chromosome; B) A 
density plot showing beta-value distributions of each sample on the Y chromosome. Each line represents a unique 
sample, colored by reported sex. Two samples (#918, #1057) showing unexpected profiles are colored in maroon 
and dark blue, respectively in both plots. 

2.2.2 SNPs marker matching 

The EPIC chip contains 59 single nucleotide polymorphism (SNP) probes for genetic 
fingerprinting purposes18. To ensure the absence of any cross-contamination or identity 
mismatching in the assayed samples, we leveraged the CLSA genetic dataset25 to perform an 
identity check by marker matching. We extracted 57 SNPs that are present in both datasets (In 
the genetic data, genotyped using the UK Biobank Axiom Arrays: 5 of the EPIC chip SNPs were 
directly measured, and 52 were imputed), and matched the sample identities using this 
information. Specifically, allele calls were extracted from the CLSA .bgen files for SNPs of 
interest, while the EPIC SNPs were converted to allele calls based on their beta values to 
facilitate cross-checking. No-calls in either dataset were dropped on a sample-to-sample basis. 
To account for possible call inaccuracies to genetic imputation and/or SNPs probes that failed to 
be called on the EPIC arrays, we elected for an arbitrary threshold of <85% match for 
designation of sample mismatches. Overall, over 99% of the samples showed >90% matches 
between these SNP calls, confirming identity match across the platforms based on genetic 
fingerprinting. 

 

Figure 8. SNP measurements on the EPIC arrays confirm the identity of all 1,478 CLSA participants via cross-
checking with the imputed genotypes in the CLSA genotyping dataset. Each dot represents a unique sample. % 
SNPs matching was calculated as (matching SNPs / all SNP data available), represented as percentages. 

A) B) 
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2.3 Marker-based quality control 

2.3.1 Probe filtering  

To get the dataset to the normalization stage, we first remove probes on the EPIC arrays whose 
profiles deviate from the expected bimodal distributions. These include the 59 SNP probes 
inspected for genetic fingerprinting as described in section 2.2.2, as well as 19,627 probes 
found on the sex chromosomes, which were illustrated in section 2.2.1. 

In addition, we remove a small subset of probes that were annotated to provide unreliable 
measurements due to flaws in their design18. These include: 43,254 cross-reactive probes that 
have >47 base pair homology with an off-target sites; as well as a total of 12,791 probes on the 
EPIC arrays which are polymorphic either at the targeted CpG sites (12,378 probes), or at the 
single base extension sites for Infinium Type I probes (413). As some of these annotated probes 
are located on the X and Y chromosomes, there were 41,773 cross-reactive and 11,520 
polymorphic autosomal probes that were taken out in this step of the data processing. 

2.3.2 Probe quality control using pfilter 

We assessed the performance quality and detection P-value at the probe level to determine 
underperforming probes across a large proportion of samples, prompting for their removal prior 
to data normalization. This was carried out using the pfilter function (R package: wateRmelon)21, 
with the default quality thresholds. pfilter reported 8,561 probes that had beadcounts <3 in >5% 
of the samples, and 1,242 additional sites exhibiting detection p-values > 0.05 in >1% of the 
samples. These 9,803 probes with sub-par qualities were dropped out from the final dataset.  

A summary of the number of total probes removed and remaining in the dataset is presented in 
Figure 9. 

 

Figure 9. A probe attrition plot of the CLSA DNA methylation dataset summarizing the number of probes remaining 

after each stage of the probe filtering process. 

2.4 Summary of sample & marker-based quality control 

We removed 4 samples due to low bisulfite conversion efficiencies as measured by the array 
control probes, and 82,782 probes due to them being SNPs, located on the sex chromosomes, 
or having poor designs or performances. 1,474 samples (with 16 additional control samples) 
and 783,136 probes remain at this stage. 
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3.0 OUTLIER SAMPLE ANALYSES 

3.1 Imputation of missing beta-values 

Following filtering of poorly designed and underperforming probes, we use the remaining probes 
to perform some analyses that informs us of statistical outlying samples. The samples that are 
defined as outliers at this step will be removed from the subsequent sample normalizations so 
as not bias the global beta-value distributions. 

Prior to carrying out these outlier analyses, we first imputed missing beta-values in the dataset 
at this stage. To infer these missing values, we first confirmed that the NA count is present in 
<5% for every sample and every remaining CpG features, then we elected to impute with the 
impute.knn function (R package: impute; v1.58.0) using the default settings, which uses the 
average of k = 10 nearest neighbours26. The resulting dataset was verified to contain no missing 
values and is used for principal component analysis (PCA), as described in the next section. 

3.2 Principal component analysis (locfdr) 

As a first approach to identify potential statistically outlying samples, we performed a principal 
component analysis (PCA) based on the remaining 1,490 (including controls) samples and 
783,136 probes, and inspected sample distributions for outliers in the first PC as described in 
Hannum et al.6 Briefly, each sample is converted into a z-score statistic based on the squared 
distance of its first PC from the population mean. The z-statistic was then converted to a local 
false-discovery rate (locfdr) by the Gaussian cumulative distribution, and the Benjamini-
Hochberg procedure. Using this method, 72 Samples falling below a converted FDR threshold 
of 0.2 were designated as statistical outliers. 

 

Figure 10. Identification of statistical outliers in the CLSA DNA methylation dataset by principal component analysis. 
A PCA was conducted using all probes remained after probe filtering, and the top two PCs are shown here. Locfdr 
outliers were computed from the first PCs and samples identified as statistical outliers (local false discovery rate <0.2) 
are colored and tagged in red. 

3.3 Beta-value correlation inspections 

Next, we examined the sample relationships by calculating pairwise Pearson’s correlations 
between all samples based on all the probes. We expect significant statistical outliers to display 
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low levels of correlations (r < 0.60) with a large proportion of the rest of samples. This could 
either be due to either severely subpar sample quality issues or extreme cell type differences 
from the normal distribution of all samples. Clustering showed that these outliers cluster out 
based on their sample relations – this is illustrated as a heatmap representing sample-sample 
correlation values in Figure 11, where we again show the controls clustering together (a red 
block showing a cluster of samples displaying high correlations, near the center of the figure). 
20 samples clustering out to the right are flagged as statistical outliers. 

 

 

Figure 11. Identification of statistical outliers in the CLSA DNA methylation dataset by overall sample beta value 
correlations. Supervised clustering on filtered dataset was performed using sample beta value correlations, and each 
square on the heatmap represents the Pearson’s pairwise correlation value between two samples represented on the 
row and column. Samples displaying consistently lower correlations to the majority were flagged as outliers. 

3.4 Additional outlier analyses 

3.4.1 outlyx (wateRmelon) 

Outlyx is a built-in wateRmelon21 function that takes a MethylumiSet object as an input and 
identifies outliers based on two outlier detection methods: 1) IQR, where the outliers are 
calculated based on interquartile ranges (default setting = 2); and 2) PCOut, where the outliers 
are determined using distance measures with a modified version of PCOut function from 
mvoutlier. We flagged a sample as an outlyx outlier when both IQR and PCOut are tagged as 
true and identified 14 outliers using this method. 
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3.4.2 detectOutlier (lumi) 

The detectOutlier function built-in to the lumi23 package identifies outlier sample based on 
distance to the cluster center, assuming all samples represent a single cluster and that the 
distance from the center sample is Gaussian distributed. Using the default threshold, we 
identified 30 outliers using this method. Figure 12 shows the beta distributions of the inliers and 
outliers identified using this method. 

 

Figure 12. Identification of statistical outliers in the CLSA DNA methylation dataset by the detectOutlier function of 
the lumi package. Density plots of beta-value distributions of the inliers versus outliers as identified by this method
are shown side-by-side, where each line represents a unique sample. 

3.5 Summary of outlier analyses 

To determine the final statistical outliers for 
preprocessing, we summarized the outlying 
samples determined by each method used. To 
balance between stringency of filtering and 
retaining samples with reasonable qualities, 
we decided to not filter out samples that were 
identified as outlying by only a single method.  

Table 1 lists 29 samples that were detected 
as “outliers” in at least two of the different 
methods used. These samples were removed 
from the downstream normalization and 
subsequent sample preprocessing 
procedures.

 

TABLE 1. A summary of the 29 outlying samples that were detected as statistical outliers in at least two of the different 
methods used in our pipeline. 
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4.0 DATA NORMALIZATION 

4.1 Inter-sample normalization: Quantile 

Data normalization was performed in two stages. In the first stage, we normalized between 
samples using the inter-sample quantile normalization method, as this aims to remove 
unwanted technical variations without taking away the biological signal. Since all samples on the 
arrays were derived from the same tissue (PBMCs), we expect the general global methylation 
distributions to be similar between all samples, which is the underlying assumption of quantile 
normalization.  

Quantile normalization is a nonlinear transformation which takes the average of each quantile 
across samples as the reference, and replaces each intensity score with this mean to force the 
observed distributions to be identical to the average27. We performed quantile normalization on 
the array beta-values using the betaqn function (wateRmelon package)21,28. As shown in Figure 
13, quantile normalization forced identical beta-value distributions, as expected. However, this 
normalization does not affect Infinium probe-type distributions (Figure 14). 

4.2 Intra-sample normalization: Beta Mixture-Interquantile (BMIQ) 

Like its predecessor the Illumina Infinium HumanMethylation450K beadarrays, the EPIC arrays 
are composed of two different probe designs: Infinium Type I, which employs two probes 
(methylated and unmethylated) per CpG locus; and Infinium Type II, which measures 
methylation at a given CpG locus using a single probe18. The smaller subset of Type I probes on 
the EPIC arrays allows for methylation measurements at CpG dense regions due to its design 
characteristics18. However, due to differences in their inherent designs, the two probe types 
display distinct distributions, with Type II probes exhibiting a much lower dynamic range, and 
reported to have more biased results29. It is important to normalize the two probe types – by 
making the two distributions more similar, it will eliminate enrichment bias towards type I probes 
in supervised analyses, and minimize their technical variations which may compound regional 
analyses in genomic regions covered by both probe types29. 

To address the differences in the probe type distributions, we performed the intra-array 
normalization method, Beta Mixture Quantile Dilation (“BMIQ”), which decomposes the density 
profiles of type I and type II probes by fitting a beta-mixture model of the unmethylated (beta-
value < 0.25), hemimethylated (0.25 < beta-value < 0.75), and methylated (beta-value > 0.75) 
states, then uses a quantile normalization to fit the beta-value distribution of the type II probes to 
that of type I probes29. As shown in Figure 13, the beta value distributions between samples 
remain relatively tight after BMIQ adjustments, with the peaks shifted and heightened as a result 
of adjusting the type II probe distributions. This shift of type II to type I probe distributions is 
evident when inspecting the density plots of the probes separately pre- and post-BMIQ, an 
effect that was not impacted by quantile normalization (Figure 14). 
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Figure 13. Density plots of beta-value distributions of the 1,445 CLSA DNAm samples that passed QC before and 
after data normalization. Each panel shows the beta-value distributions of all samples: A) Before data normalization; 
B) after inter-sample quantile normalization; and C) after inter-sample quantile and intra-sample BMIQ 

normalizations. Each sample is represented by a line, colored by their respective array batch. 

 

           Beta Value 

Figure 14. Probe Type beta-value density distributions of all 1,445 CLSA DNAm samples that passed QC before and 
after data normalization. Each line represents the average beta-distribution of all samples, colored by preprocessing 
stage (note that for “Type I” – all three solids lines overlay; while for “Type II”, the red dashed line representing raw 
data is overlaid by the green dashed line, representing quantile-normalized data). 

5.0 TECHNICAL BATCH CORRECTIONS 

5.1 Inspection of batch effects 

Normalization, in theory, should get rid of most of the technical batch variations present in the 
data. To ascertain this, we performed another PCA using the normalized sample beta-values at 
this stage of data preprocessing and examined the amount of variations associated with each of 
the top 10 PCs in a scree plot. We then performed multiple association tests to check for 
significant correlations between each PC and the variables (technical and biological) of interest 
to determine, if the variability in DNA methylation in any PC, is significantly attributable to batch 
effects. In this study, we considered three batch variables: bisulfite conversion batch, the array 
chip, and the array row. Figure 15 shows the results of this analysis: While the first PC, 
representing 20.4% of the adjusted DNAm variance, is not associated with the technical 
variables, the second PC, which represents 8.6% adjusted DNAm variance, is moderately 
associated with array chip and bisulfite conversion batch. In addition, the technical variables are 
associated with PCs 4-10, despite these each representing only a small fraction of the DNAm 
variation. We will use the ComBat function to perform batch corrections in the next section.  

A) B) C) 
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Figure 15. A heat-scree plot showing the relations between study technical (“Chip”, “Row”, and “Bisulfite Batch”) and 
biological (“Sex” and “Age”) variables and each principal component of the methylation data after data normalization. 
Top Panel is a bar/scree plot representing the percent of adjusted variance associated with each methylation data 
principal component, and the bottom panel is a heatmap showing the strength of association (multiple test corrected) 
between the study variables with each PC. 

5.2 Technical batch corrections using ComBat 

ComBat was developed by Johnson, Rabinovic, and Li30. Its purpose is to correct for effects of 
known microarray batches using parametric and non-parametric empirical Bayes frameworks, 
essentially by adjusting the data for each CpG to match a common cross-batch mean that is 
estimated using samples from all batches. The batches that are commonly under consideration 
for microarray studies are: the array chip, each of which holds 8 samples; and the array row, 
each row representing one sample on a chip. In addition to these two technical variables, the 
bisulfite conversion batch, which is unconfounded from the array batches, also showed some 
significant contributions to batch effects in this study (Figure 15), and has been suggested as a 
source of variation to take into consideration31. 

We used the ComBat function from the R package sva (v3.32.1) to adjust for beta value 
differences between samples, taking these three technical batches (row, chip, bisulfite batch) 
into consideration, and performing sequential ComBat procedures to correct for these batch 
effects. After each correction, the batch effects were examined using heat-scree plots (Section 
5-1). Figure 16 shows the final results after adjusting for all three technical batch variables and 
confirms the lack of association of array arrays and rows with the top 10 PCs following batch 
adjustments; while bisulfite conversion batch still appears to be strongly associated with PC8, 
this PC only represents 0.5% of the DNA methylation data variance, which is a sharp decline 
compared to before batch correction. 

We note that sex appears to be consistently strongly associated with the top PCs. We therefore 
opted to perform a quick visual check on these associations by constructing violin plots of male 
versus female distributions for each of the top 3 PCs to confirm that while sex is associated with 
the top 3 PCs (accounting for a total of ~30% methylation variance), the distributions of the 
sexes are not completely segregated in each of these PCs (Figure 17). These data 
demonstrate that sex should be accounted as an important covariate in study models, because 
there is evidence for sex differences in DNA methylation of autosomal probes. 
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Figure 16. A heat-scree plot showing the relations between study technical (“Chip”, “Row”, and “Bisulfite Batch”) and 
biological (“Sex” and “Age”) variables and each principal component of the methylation data after batch correction 
with ComBat. Top Panel is a bar/scree plot representing the percent of adjusted variance associated with each 
methylation data principal component, and the bottom panel is a heatmap showing the strength of association 

(multiple test-corrected) between the study variables with each PC. 

 

Figure 17. Violin plots showing the distribution of participant sex with respect to the top 3 principal components 
derived from a PCA analysis on the post-ComBat methylation data of the CLSA cohort. Two-tailed t-test statistics 
were performed between sexes in each PC. 

6.0 BLOOD CELL TYPE CORRECTIONS 

6.1 Bioinformatic estimations of blood cell types 

As each cell type is known to be associated with a distinct DNA methylation signature, DNA 
methylation analyses in tissues are always compounded by the potential differences in cell type 
proportions between samples32–34. Since PBMCs are made up of different subtypes of immune 
cells, such as the B lymphocytes, T lymphocytes, and monocytes, it is important to address the 
cell proportions in each sample to minimize cell type bias. This can usually be achieved by 
either FACS sorting of the original specimen, or bioinformatically using a method known as cell-
type deconvolution, as described below. 

To estimate the immune cell type proportions within each PBMC sample, we performed 
bioinformatic cell type prediction based on an established reference-based algorithm32. In short, 
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this method involves constrained projection of the DNA methylation profile in question onto a 
“reference” DNA methylation set comprised of signatures derived for each sorted immune cell 
type35. This allows for inference of the estimated proportions of five major white blood cell 
subtypes found in PBMC specimens: B lymphocytes, CD4+ T lymphocytes, CD8+ T 
lymphocytes, Natural Killer (NK) lymphocytes, monocytes. The method also allows an 
estimation of granulocyte proportions which, although should be absent from the PBMC 
fractions, may be still present in a miniscule fraction owing to the cell separation procedure. 

Figure 18 summarizes the cell count estimates for the remaining samples, where each colored 
dot represents the estimated proportion of the respective cell type for an individual, and the bar 
graphs illustrate the range of the cell proportions across all individuals. We observe zero 
granulocyte proportions for almost all individuals, confirming the purity of the PBMC isolations. 
Meanwhile, the rest of the estimated cell type proportions roughly conform to those expected in 
normal human samples, but with a large spread across the cohort36.  

 
 

Figure 18. A boxplot showing the range of estimated cell type proportions (using the reference-based Houseman 
method) of the CLSA PBMC samples. Each overlaying dot represents an individual sample. Whiskers are plotted 
where? Different software plots whiskers are different locations. 

To demonstrate that cell type signatures are indeed highly associated with sample methylation 
profiles, we included the estimated cell proportions into our post-ComBat heat-scree plot. 
Figure 19 illustrates that the top 10 PCs from the batch-corrected methylation data are 
significantly and consistently associated with the various predicted blood cell types. Therefore, 
one should take caution and address the cell type bias in the downstream analyses, either by 
including the estimated proportions into the final study model as covariates, or by adjusting the 
beta values with respect to these cell type differences, as described in the next section. 
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Figure 19. A heat-scree plot showing the relations between study variables, estimated cell types, and each principal 
component of the methylation data after batch correction with ComBat. Top Panel is a bar/scree plot representing the 
percent of adjusted variance associated with each methylation data principal component, and the bottom panel is a 

heatmap showing the strength of association (multiple test corrected) between the study variables with each PC. 

6.2 Beta value adjustment to differential estimated cell type counts by linear 
regression 

In this data release, we used a regression-based approach as described in Jones et al.37 to 
provide users with beta-values that are adjusted for cell types. Briefly, we fitted a linear model 
on the DNA methylation outcome using the six estimated proportions of cell subtypes as 
additive variables for each probe, then we extracted residuals from the resulting linear models. 
These residuals represent DNA methylation variability that are unexplained by cell type 
composition, and therefore, may be attributed to other phenotypic variable of interest. Finally, 
we added the residuals of each regression model to the mean beta value of each probe across 
all samples to obtain the final “adjusted” methylation data. Note importantly, because the 
operational definition of a beta value being between 0-1, here we forced the adjusted values >1 
to be 0.999 and those <0 to be 0.001, representing fully methylated and unmethylated state of 
the given probe, respectively. 

Following this adjustment procedure, we see that the cell type proportions have been 
“regressed out” when we performed another round of reference-based cell type predictions 
(Figure 20), as the participants now exhibit comparable cell type proportions if these 
proportions were re-estimated using the cell type adjusted set of beta values. Furthermore, PCA 
shows that the cell types are no longer associated with the top PCs; importantly, the adjusted 
variances of the top 2 PCs have been reduced to 6.8% and 1.2% percent, respectively, 
demonstrating the importance of correcting for cell type variations associated with the data prior 
to further analyses (Figure 21). Nevertheless, the density plots of global beta values for all the 
samples remained as bimodally distributed (Figure 22). The provided cell-type corrected beta-
values should now be appropriate for further data analyses without the need to include cell type 
proportions as covariates into the study models.  
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Figure 20. A boxplot showing the range of estimated cell type of the CLSA PBMC samples A) before; and B) after 
cell-type adjustment by linear regression. Each overlaying dot represents an individual sample. 

 

Figure 21. A heat-scree plot showing the relations between study variables, estimated cell types, and each principal 
component of the methylation data after cell-type adjustment. Top Panel is a bar/scree plot representing the percent 
of adjusted variance associated with each methylation data principal component, and the bottom panel is a heatmap 
showing the strength of association (multiple test-corrected) between the study variables with each PC. 
 

 
Figure 22. Density plots of beta-value distributions of the CLSA DNAm samples A) before; and B) after cell-type 
adjustment by linear regression. Each sample is represented by a line, colored by their respective array batch. 

A) B) 

A) B) 
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7.0 EXEMPLAR EPIGENOME-WIDE ASSOCIATION STUDY (EWAS) WITH 
CHRONOLOGICAL AGE 

7.1 Introduction 

In this section, we performed an example EWAS with chronological age using the preprocessed 
CLSA DNAm dataset to demonstrate the quality and utility of the data release. As several 
studies have demonstrated replicable associations between DNA methylation patterns and 
chronological aging in human blood samples, we will also compare our results with these past 
reports to illustrate data quality. 

7.2 Chronological age EWAS 

To ascertain the quality of the preprocessed CLSA data and examine whether there is an 
association between DNA CpG loci and chronological aging in our dataset, we used the 
preprocessed CLSA data and fitted each remaining CpG probe to the following linear model 
assigning age as the main effect, using participant reported sex as a covariate. Beta-values 
were converted to log-transformed methylation M-values in our study model as it is more 
appropriate for the homoscedasticity assumption in a multiple regression model14: 

   lm(M value ~ Chronological Age + Participant Sex) 

Statistical significance of each CpG was assessed using multiple-test corrected (Benjamini-
Hochberg) association p-values and represented as false discovery rates (FDRs)38. We also 
used the biological effect size (delta-beta)39, calculated as the difference in methylation beta-
values between the highest and lowest chronological age within the cohort, to further define 
significantly associated loci. Using the FDR statistics and the delta-beta value, we constructed a 
volcano plot as shown in Figure 23 as a graphic representation of our model results. The list of 
CpGs that met the statistical thresholds of FDR < 1e-100 and biological effect size threshold of 
>5% delta-beta is presented in Table 2. 

  

Figure 23. A volcano plot showing CpG loci on the EPIC arrays whose methylation status are significantly associated 
with chronological aging in the preprocessed CLSA DNAm dataset, as filtered by effect size (Delta Beta > 5%) and 
statistical significance (FDR < 1e-100). Loci passing the significant thresholds are colored and annotated by their 
associated genes. 
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TABLE 2. List of CpG loci on the EPIC arrays that show DNAm changes significantly associated with chronological 
age in the CLSA DNAm dataset. In addition to Beta, SE would be useful as well. For coordinate, please specify which 
build of the human genome (GRCh37/38)? 

 

All 17 hypermethylated and 3 hypomethylated CpGs passing our thresholds replicated top hits 
reported from previous studies. These top age-associated CpGs included loci associated with 
the promoters of two genes, FHL2 and ELOVL2, whose increased methylation levels have been 
well-documented as associated with chronological aging40–42. We also replicated 
hypermethylation trends for specific loci associated with ZYG11A, FAM123C, LHFPL4, CELF6, 
CACNA1G, CILP2, and SLC12A541,43–45. In addition, we also observed the previously-reported 
age-related hypomethylation in the CCDC102B 5’ UTR region43.  

Figure 24 highlights some of the CpG-specific methylation trends associated with chronological 
age found in the CLSA DNAm dataset.  

 

CpG Chr Coordinate Nominal P-value FDR Trend with Age Delta Beta Associated Gene Genomic Context

CpGs exhibiting hypermethylation with increasing age

cg06784991 1 53308768 1.59E-108 6.90E-104 Hypermethylation 0.085 ZYG11A Body

cg06639320 2 106015739 4.10E-139 5.36E-134 Hypermethylation 0.106 FHL2 TSS200

cg17268658 2 106015745 3.59E-150 9.36E-145 Hypermethylation 0.091 FHL2 TSS200

cg22454769 2 106015767 9.29E-141 1.45E-135 Hypermethylation 0.094 FHL2 TSS200

cg23606718 2 131513927 1.22E-113 6.35E-109 Hypermethylation 0.060 FAM123C 5'UTR

cg24866418 3 9594082 2.25E-114 1.26E-109 Hypermethylation 0.069 LHFPL4 Body

cg12841266 3 9594093 8.40E-119 5.49E-114 Hypermethylation 0.065 LHFPL4 Body

cg06570224 3 157812475 1.71E-116 1.03E-111 Hypermethylation 0.070 (Intergenic)

cg16867657 6 11044877 1.89E-225 1.48E-219 Hypermethylation 0.133 ELOVL2 TSS1500

cg24724428 6 11044888 8.09E-168 3.17E-162 Hypermethylation 0.104 ELOVL2 TSS1500

cg21572722 6 11044894 7.23E-148 1.41E-142 Hypermethylation 0.080 ELOVL2 TSS1500

cg08637691 9 134989631 1.12E-107 4.16E-103 Hypermethylation 0.078 (Intergenic)

cg27099280 15 72612204 7.25E-108 2.84E-103 Hypermethylation 0.074 CELF6 1stExon

cg11071401 17 48637194 5.29E-122 4.14E-117 Hypermethylation 0.067 CACNA1G TSS1500

cg07544187 19 19651235 4.06E-128 4.54E-123 Hypermethylation 0.100 CILP2 Body

cg17110586 19 36454623 2.04E-109 9.38E-105 Hypermethylation 0.072 (Intergenic)

cg07547549 20 44658225 4.45E-127 4.36E-122 Hypermethylation 0.100 SLC12A5 Body

CpGs exhibiting hypomethylation with increasing age

cg26947034 7 33935438 9.21E-120 6.56E-115 Hypomethylation -0.080 (Intergenic)

cg19283806 18 66389420 3.23E-108 1.33E-103 Hypomethylation -0.087 CCDC102B 5'UTR

cg13552692 18 66389447 5.40E-123 4.70E-118 Hypomethylation -0.110 CCDC102B 5'UTR
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Figure 24. Dot plots showing changes in DNA methylation levels (beta-value) in the CLSA DNAm dataset with 
respect to participant ages at selected loci associated with A) ELOVL2 promoter; B) FHL2 promoter; and C) 

CCDC102B 5’UTR regions. Blue line in each panel represents predicted fit of each linear model (DNAm ~ Age). 

8.0 EPIGENETIC AGE CALCULATIONS USING DNA METHYLATION DATA 

8.1 Introduction 

This CLSA epigenetics data release also provides epigenetic age estimations using the Horvath 
and the Hannum epigenetic clocks, two of the first-established epigenetic age algorithms, for all 
1,478 participants assayed. These epigenetic clocks represent a biomarker of aging and 
health5,6. The pan-tissue Horvath epigenetic clock algorithm, originally developed based on the 
DNA methylation status of 353-CpG sites on the Illumina 450K arrays, is capable of predicting 
the “epigenetic age” that in theory correlates highly with an individual’s chronological age5; 
Epigenetic age acceleration as determined by Horvath clock has been associated to conditions 
including: Down Syndrome, Huntington’s disease, HIV infections, obesity, and lifetime stress46. 
The Hannum clock was developed with exclusively blood samples and uses a different set of 71 
CpGs to estimate ages6. Although the EPIC chip lacks some of the original sites from the 450K 
arrays used to develop these clocks, it has been shown that the platform still provides an 
accurate age estimation47. 

Note that while there have been additional clocks7,48,49 developed in the recent years, they are 
not provided in this release, but the users should be able to calculate them with the provided 
beta-values in the data release.  

8.2 Calculation of epigenetic ages 

To calculate the epigenetic ages, we followed instructions as provided by the Horvath 
DNAmAge website50. Briefly, we used GenomeStudio colour-corrected and background-
subtracted beta-value matrix as previously recommended47, and subsetted to 28,587 CpGs 
provided in the Horvath annotation file to use as our data input. In addition to the 353 and 71 
CpG sites for the Horvath and Hannum clocks, respectively, the additional CpGs are imperative 
for data normalization purposes for the prediction algorithm. Once the data was properly 
reshaped, they were submitted to the DNAmAge website together with a sample annotation file 
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specifying the chronological age, biological sex, and tissue type (PBMC) of each individual, with 
the “Normalize Data” and “Advanced Analysis” options selected. The advanced analysis 
computes the Hannum age, estimates sample cell type proportions to allow calculations of the 
extrinsic and intrinsic epigenetic age accelerations11 (EEAA and IEAA, respectively), and 
includes some additional calculations not discussed in this data release.  

Note: Using the updated DNA methylation age calculator may result in slightly different DNA 
methylation age values for the Horvath clock 

8.3 Examination of epigenetic age estimates 

We examined the epigenetic age calculation results by performing linear regressions of the 
Horvath and Hannum epigenetic ages against the participant chronological ages and calculated 
the Pearson correlation coefficients. As expected, both clocks displayed highly significant 
positive correlations between the measures (Figure 25: Horvath: r = 0.874, p < 2.2e-16; 
Hannum: r = 0.855, p < 2.2 e -16).  

 
Figure 25. Dot plots showing relationships between A) Horvath DNAm Age and; B) Hannum DNAm Age, and 
participant chronological age in years. Blue line in each panel represents predicted fit of each linear model (DNAm 
Age ~ Chronological Age). 

Using the absolute epigenetic age of the Horvath clock, we derived the age acceleration 
differences, age acceleration residuals, and IEAA and EEAA for each CLSA participant. These 
age-related variables are included in the data release. 

  

r =  0.8739 
p < 2.2 e -16 

40

50

60

70

80

50 60 70 80

Chronological Age (Years)

H
o

rv
a
th

 D
N

A
m

A
g

e
 (

Y
e

a
rs

)

Horvath Age

r =  0.8554 
p < 2.2 e -16 

40

60

80

100

50 60 70 80

Chronological Age (Years)

H
a

n
n

u
m

 D
N

A
m

A
g

e
 (

Y
e

a
rs

)

Hannum Age

Participant 
Sex

F

M

A) B) 

A)        
B) 

 



 
CLSA Data Support Document 

Genome-Wide DNA Methylation Profiling 

 

CLSA_DataSupportDoc_Epigenetics v2.0_2022Nov30 Page 28 of 31 

REFERENCES 

1. Bird, A. Perceptions of epigenetics. Nature 447, 396–398 (2007). 

2. Zhu, H., Wang, G. & Qian, J. Transcription factors as readers and effectors of DNA 
methylation. Nat. Rev. Genet. 17, 551–565 (2016). 

3. Islam, S. A., Lussier, A. A. & Kobor, M. S. Epigenetic analysis of human postmortem brain 
tissue. Handb. Clin. Neurol. 150, 237–261 (2018). 

4. Luo, C., Hajkova, P. & Ecker, J. R. Dynamic DNA methylation: In the right place at the 
right time. Science 361, 1336–1340 (2018). 

5. Horvath, S. DNA methylation age of human tissues and cell types. Genome Biol. 14, R115 
(2013). 

6. Hannum, G. et al. Genome-wide methylation profiles reveal quantitative views of human 
aging rates. Mol. Cell 49, 359–367 (2013). 

7. Levine, M. E. et al. An epigenetic biomarker of aging for lifespan and healthspan. Aging 
10, 573–591 (2018). 

8. Researchers | Canadian Longitudinal Study on Aging. https://www.clsa-
elcv.ca/researchers. 

9. Infinium MethylationEPIC Data Sheet | Illumina. https://science-
docs.illumina.com/documents/Microarray/infinium-methylation-epic-data-sheet-1070-2015-
008/Content/Source/Microarray/Infinium/MethylationEPIC/infinium-methylation-epic-data-
sheet.html. 

10. Infinium MethylationEPIC BeadChip Product Files. 
https://support.illumina.com/array/array_kits/infinium-methylationepic-beadchip-
kit/downloads.html. 

11. Chen, B. H. et al. DNA methylation-based measures of biological age: meta-analysis 
predicting time to death. Aging 8, 1844–1865 (2016). 

12. Clark, S. J., Statham, A., Stirzaker, C., Molloy, P. L. & Frommer, M. DNA methylation: 
bisulphite modification and analysis. Nat. Protoc. 1, 2353–2364 (2006). 

13. GenomeStudio Methylation Module v1.8 User Guide (11319130). 114. 

14. Du, P. et al. Comparison of Beta-value and M-value methods for quantifying methylation 
levels by microarray analysis. BMC Bioinformatics 11, 587 (2010). 

15. Package ‘minfi’. 
http://bioconductor.org/packages/release/bioc/manuals/minfi/man/minfi.pdf. 

16. Package ‘methylumi’. 
https://www.bioconductor.org/packages/release/bioc/manuals/methylumi/man/methylumi.p
df. 



 
CLSA Data Support Document 

Genome-Wide DNA Methylation Profiling 

 

CLSA_DataSupportDoc_Epigenetics v2.0_2022Nov30 Page 29 of 31 

17. Long, H. K., King, H. W., Patient, R. K., Odom, D. T. & Klose, R. J. Protection of CpG 
islands from DNA methylation is DNA-encoded and evolutionarily conserved. Nucleic 
Acids Res. 44, 6693–6706 (2016). 

18. Pidsley, R. et al. Critical evaluation of the Illumina MethylationEPIC BeadChip microarray 
for whole-genome DNA methylation profiling. Genome Biol. 17, 208 (2016). 

19. Kuan, P. F., Wang, S., Zhou, X. & Chu, H. A statistical framework for Illumina DNA 
methylation arrays. Bioinforma. Oxf. Engl. 26, 2849–2855 (2010). 

20. Infinium HD Methylation Assay Reference Guide (15019519). 
https://support.illumina.com/content/dam/illumina-
support/documents/documentation/chemistry_documentation/infinium_assays/infinium_hd
_methylation/infinium-methylation-assay-reference-guide-15019519-07.pdf. 

21. Package ‘wateRmelon’. 
https://www.bioconductor.org/packages/release/bioc/manuals/wateRmelon/man/wateRmel
on.pdf. 

22. Wong, C. C., Pidsley, R. & Schalkwyk, L. C. The wateRmelon Package. 
https://bioconductor.org/packages/release/bioc/vignettes/wateRmelon/inst/doc/wateRmelo
n.pdf. 

23. Package ‘lumi’. 
https://www.bioconductor.org/packages/release/bioc/manuals/lumi/man/lumi.pdf. 

24. Joo, J. E. et al. Human active X-specific DNA methylation events showing stability across 
time and tissues. Eur. J. Hum. Genet. EJHG 22, 1376–1381 (2014). 

25. Forgetta, V. et al. The Canadian Longitudinal Study on Aging. https://www.clsa-
elcv.ca/doc/2748. 

26. Package ‘impute’. 
https://www.bioconductor.org/packages/release/bioc/manuals/impute/man/impute.pdf. 

27. Bolstad, B. M., Irizarry, R. A., Astrand, M. & Speed, T. P. A comparison of normalization 
methods for high density oligonucleotide array data based on variance and bias. 
Bioinforma. Oxf. Engl. 19, 185–193 (2003). 

28. Pidsley, R. et al. A data-driven approach to preprocessing Illumina 450K methylation array 
data. BMC Genomics 14, 293 (2013). 

29. Teschendorff, A. E. et al. A beta-mixture quantile normalization method for correcting 
probe design bias in Illumina Infinium 450 k DNA methylation data. Bioinforma. Oxf. Engl. 
29, 189–196 (2013). 

30. Johnson, W. E., Li, C. & Rabinovic, A. Adjusting batch effects in microarray expression 
data using empirical Bayes methods. Biostat. Oxf. Engl. 8, 118–127 (2007). 

31. Price, E. M. & Robinson, W. P. Adjusting for Batch Effects in DNA Methylation Microarray 
Data, a Lesson Learned. Front. Genet. 9, 83 (2018). 



 
CLSA Data Support Document 

Genome-Wide DNA Methylation Profiling 

 

CLSA_DataSupportDoc_Epigenetics v2.0_2022Nov30 Page 30 of 31 

32. Houseman, E. A. et al. DNA methylation arrays as surrogate measures of cell mixture 
distribution. BMC Bioinformatics 13, 86 (2012). 

33. Reinius, L. E. et al. Differential DNA methylation in purified human blood cells: implications 
for cell lineage and studies on disease susceptibility. PloS One 7, e41361 (2012). 

34. Jaffe, A. E. & Irizarry, R. A. Accounting for cellular heterogeneity is critical in epigenome-
wide association studies. Genome Biol. 15, R31 (2014). 

35. Koestler, D. C. et al. Blood-based profiles of DNA methylation predict the underlying 
distribution of cell types: a validation analysis. Epigenetics 8, 816–826 (2013). 

36. Kleiveland, C. R. Peripheral Blood Mononuclear Cells. in The Impact of Food Bioactives 
on Health: in vitro and ex vivo models (eds. Verhoeckx, K. et al.) 161–167 (Springer 
International Publishing, 2015). doi:10.1007/978-3-319-16104-4_15. 

37. Jones, M. J., Islam, S. A., Edgar, R. D. & Kobor, M. S. Adjusting for Cell Type Composition 
in DNA Methylation Data Using a Regression-Based Approach. in Population Epigenetics: 
Methods and Protocols (eds. Haggarty, P. & Harrison, K.) 99–106 (Springer, 2017). 
doi:10.1007/7651_2015_262. 

38. Benjamini, Y. & Hochberg, Y. Controlling the False Discovery Rate: A Practical and 
Powerful Approach to Multiple Testing. J. R. Stat. Soc. Ser. B Methodol. 57, 289–300 
(1995). 

39. Bush, N. R. et al. The biological embedding of early-life socioeconomic status and family 
adversity in children’s genome-wide DNA methylation. Epigenomics 10, 1445–1461 
(2018). 

40. Garagnani, P. et al. Methylation of ELOVL2 gene as a new epigenetic marker of age. 
Aging Cell 11, 1132–1134 (2012). 

41. Florath, I., Butterbach, K., Müller, H., Bewerunge-Hudler, M. & Brenner, H. Cross-sectional 
and longitudinal changes in DNA methylation with age: an epigenome-wide analysis 
revealing over 60 novel age-associated CpG sites. Hum. Mol. Genet. 23, 1186–1201 
(2014). 

42. Slieker, R. C., Relton, C. L., Gaunt, T. R., Slagboom, P. E. & Heijmans, B. T. Age-related 
DNA methylation changes are tissue-specific with ELOVL2 promoter methylation as 
exception. Epigenetics Chromatin 11, 25 (2018). 

43. Park, J.-L. et al. Identification and evaluation of age-correlated DNA methylation markers 
for forensic use. Forensic Sci. Int. Genet. 23, 64–70 (2016). 

44. Bacos, K. et al. Blood-based biomarkers of age-associated epigenetic changes in human 
islets associate with insulin secretion and diabetes. Nat. Commun. 7, 11089 (2016). 

45. Tajuddin, S. M. et al. Novel age-associated DNA methylation changes and epigenetic age 
acceleration in middle-aged African Americans and whites. Clin. Epigenetics 11, 119 
(2019). 

46. Quach, A. et al. Epigenetic clock analysis of diet, exercise, education, and lifestyle factors. 



 
CLSA Data Support Document 

Genome-Wide DNA Methylation Profiling 

 

CLSA_DataSupportDoc_Epigenetics v2.0_2022Nov30 Page 31 of 31 

Aging 9, 419–446 (2017). 

47. McEwen, L. M. et al. Systematic evaluation of DNA methylation age estimation with 
common preprocessing methods and the Infinium MethylationEPIC BeadChip array. Clin. 
Epigenetics 10, 123 (2018). 

48. Horvath, S. et al. Epigenetic clock for skin and blood cells applied to Hutchinson Gilford 
Progeria Syndrome and ex vivo studies. Aging 10, 1758–1775 (2018). 

49. Lu, A. T. et al. DNA methylation GrimAge strongly predicts lifespan and healthspan. Aging 
11, 303–327 (2019). 

50. DNA Methylation Age Calculator. https://dnamage.genetics.ucla.edu/. 

 


