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Abstract

Genetic and environmental factors contribute to maintaining health and in the development of disease
and disability as people age. The Canadian Longitudinal Study on Aging (CLSA) is a national long-term
cohort study that will follow approximately 50,000 men and women, and presents a unique opportunity to
study genetic and environmental contributions to human health and disease by providing information on
the changing biological, medical, psychological, social, lifestyle and economic aspects of participants’
lives. This document describes the availability and quality assessment of genetic data for 26,622 CLSA
participants, comprising genome-wide genotype data for 794,409 markers and whole-genome imputed
data for ~308 million genetic variants. Quality assessment includes both marker- and sample-based tests,
as well as analysis of population structure and familial relatedness. Qualified researchers from any
country can obtain access to these genomic and phenotypic data via the CLSA data access webpage at
https://www.clsa-elcv.ca/data-access.

Data Release Summary

• Genotype data for 26,622 CLSA participants with 93% of European ancestry.

• Affymetrix Axiom array genotypes for 794,409 genetic variants, of which 95% are high quality.

• TOPmed imputed genotypes for ~308 million genetic variants.

https://www.clsa-elcv.ca/data-access
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1 Introduction

1.1 The CLSA cohort

The Canadian Longitudinal Study on Aging (CLSA) is a large, national, long-term cohort study that will
follow approximately 50,000 men and women who are between the ages of 45 and 85 years when
recruited, for at least 20 years. The CLSA will collect information on the changing biological, medical,
psychological, social, lifestyle and economic aspects of people’s lives. These factors will be studied to
understand how, individually and in combination, they have an impact in both maintaining health and in the
development of disease and disability as people age. Recruitment and baseline data collection took place
2010-2015. The first follow up was completed 2015-2018.
In addition to this, DNA extraction and genotyping was performed at the McGill and Genome Quebec
Innovation Centre, Montreal, Canada. Participants were genotyped using the Affymetrix UK Biobank Axiom
array [1].

1.2 The UK Biobank Axiom genotyping array

The UK Biobank Axiom array was used to genotype ~450,000 individuals in the UK Biobank cohort [2]. The
array has been designed to target known disease associated variants, known coding variants, as well as a
panel of variants for optimal imputation in individuals of European ancestry, an ancestry that includes over
90% of CLSA genotyped participants (see section 3.1). For more information regarding the UK Biobank
Axiom genotyping array, please refer to [1].

1.3 About this data release

This data release contains genotype data for 26,622 successfully genotyped CLSA participants across
794,409 genetic markers, as well as 308 million genetic variants imputed from the TOPMed reference
panel [3]. The marker- and sample-based quality control presented in this document largely follows the
same procedure used by UK Biobank [4]. Genomic positions of the array genotyped and imputed genotype
data are reported in reference to human genome build GRCh37/hg19 and GRCh38/hg38, respectively. In
addition, this data release contains genetic data for the control samples used during array genotying
(section 1.4.2 and section 1.4.3).

1.3.1 CLSA Genetic Data Files and File Formats

The following files are provided with this data release:

• Filename: clsa gen v3.bed — PLINK binary biallelic genotype table.

• Filename: clsa gen v3.bim — PLINK extended MAP file.

• Filename: clsa gen v3.fam — PLINK sample information file. The individual identifier (IID)
corresponds to the ADM GWAS COM variable, which is used as a link to project-specific CLSA participant
identifiers associated with data from questionnaires and physical assessments. Also included are
control samples used during array genotyping (section 1.4.2 and section 1.4.3).

The directly genotyped data are in binary PLINK format (.bed, .bim, .fam). For more information, please
refer to https://www.cog-genomics.org/plink/1.9/formats. The .bim and .fam file lists the order of the
markers and genotyped individuals, respectively. It is recommended to use PLINK to manipulate these files
(https://www.cog-genomics.org/plink/1.9/).
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• Filename: clsa imp {1..23} v3.bgen — Genotype imputation for the autosomes and X
chromosome (coded as 23).

• Filename: clsa imp {1..23} v3.bgen.bgi — .bgen index file for the autosomes and X chromosome
(coded as 23).

• Filename: clsa imp v3.sample — Sample information file for imputed genotype data. The individual
identifier (ID 1) corresponds to the ADM GWAS COM variable, which is used as a link to
project-specific CLSA participant identifiers associated with data from questionnaires and physical
assessments. Also included are control samples used during array genotyping (section 1.4.2 and
section 1.4.3).

• Filename: clsa mfi {1..23} v3.txt — Contains alternate allele frequency and imputation quality
score (Rsq) for each of the markers in the imputed data. Columns are: rsid, ref allele,
alt allele, alt allele frequency.1, Rsq.1, alt allele frequency.2, Rsq.2. Two values for
alternate allele frequency and imputation quality score are provided, one for each batch of the
imputation process (see section 5).

The imputed genotyped data are in binary BGEN version 1.2 format using 8-bit encoding [5]. The .sample
file lists the order of the individuals within the imputed genotype data files (.bgen). It is recommended to
use qctool version 2 [6] or bgenix [7] to manipulate this data type. A list of other compatible software is
listed on the BGEN format website [8].
The conversion of the original VCF files (1.9 TB) to the more efficient BGEN format (187 GB) using PLINK2
resulted in collapsing of the raw genotype probabilities down to dosage. Therefore, lossless extraction of
the original genotype probabilities is not possible using the BGEN files provided [9]. This is of limited
consequence as most downstream analysis use dosage only, such as most modern GWAS software.
Should your analyses require the original genotype probabilities, requests for the original VCF files can be
directed to the contact information provided on the CLSA data access webpage at
https://www.clsa-elcv.ca/data-access.

• Filename: clsa mqc v3.txt — Marker QC metrics file

The marker quality control metrics file contains information pertaining to the quality assessment of the
directly genotyped markers (section 3). It is a plaintext file with the following space separated columns:

1. affymetrix probeset id — datatype: string — Identifier for probeset from Affymetrix array definition.

2. affymetrix snp id — datatype: string — Identifier for marker from Affymetrix array definition.

3. rs id — datatype: string — If available, the dbSNP identifier.

4. chromosome — datatype: numeric — Chromosome label 1-26; 23=X,24=Y,25=XY,26=MT.

5. position — datatype: numeric — Physical position of start of marker/Indel in GRCh37 coordinates.

6. allele 1 — datatype: string — Marker allele 1.

7. allele 2 — datatype: string — Marker allele 2.

8. batch disc — datatype: numeric — Count of batches where marker failed genotype frequency
discordance test.

9. hwe disc — datatype: numeric — Count of batches where marker failed HWE test.

10. ctl disc — datatype: numeric — Count of batches where marker failed control genotype
discordance test.

11. sex disc — datatype: numeric — Count of batches where marker failed sex genotype frequency
discordance test.
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12. low freq — datatype: (0/1) [no/yes] — Marker has low minor allele frequency.

13. indel — datatype: (0/1) [no/yes] — Marker is an insertion or deletion.

• Filename: clsa sqc v3.txt — Sample QC metrics file.

The sample quality control metrics file contains information pertaining to the quality assessment per
genotyped sample (section 4). It is a plaintext file with the following space separated columns:

1. ADM GWAS COM — datatype: numeric — This identifier is used as a link to project-specific CLSA
participant identifiers associated with data from questionnaires and physical assessments.

2. batch — datatype: numeric — Indicates the batch from which the called the genotypes for this
sample originated.

3. selfreported.sex — datatype: (0/1/2) [missing/male/female] — Self-reported sex.

4. chromosomal.sex — datatype: (0/1/2) [missing/male/female] — Sex chromosome composition as
determined via PLINK (section 1.4.4).

5. pca.cluster.id — datatype: numeric — Indicates cluster number based on a principal components
analysis of the genotypes (section 4.5).

6. in.kinship — datatype: (0/1) [no/yes] — Indicates samples which have at least one relative of 3rd
degree or closer among the set of genotyped individuals (section 4.2).

7. in.hetmiss — datatype: (0/1) [no/yes] — Indicates samples identified as outliers in heterozygosity or
genotype missingness (section 4.3).

8-27. PC1-20 — datatype: numeric — Score for each principal component 1-20 (section 4.4).

28-47. ePC1-20 — datatype: numeric — Score for each principal component 1-10 for analysis of individuals
within the European ancestry subset only (section 4.5).

• Filename: clsa rel v3.txt — Sample relatedness file.

The sample relatedness file lists the pairs of individuals related up to the third degree in the data set. The
file contains information obtained from the analysis of familial relatedness (see section 4.2) using the KING
software program [10].

1. ADM GWAS COM 1 — datatype: numeric — This identifier is used as a link to project-specific CLSA
participant identifiers associated with data from questionnaires and physical assessments.

2. ADM GWAS COM 2 — datatype: numeric — This identifier is used as a link to project-specific CLSA
participant identifiers associated with data from questionnaires and physical assessments.

3. HetHet — datatype: numeric — Proportion of SNPs with double heterozygotes (e.g., AG and AG).

4. IBS0 — datatype: numeric — Porportion of SNPs with zero IBS (identical-by-state) (e.g., AA and GG).

5. Kinship — datatype: numeric — Estimated kinship coefficient (φ) from the SNP data.

6. InfType — datatype: string — Inferred relationship type, such as Dup/MZTwin, PO, FS, 2nd, 3rd, 4th,
UN.

• Filename: clsa hla v3.csv — The imputation of HLA alleles.

The HLA imputation file contains information pertaining to the imputation of classical human leukocyte
antigen (HLA) alleles from SNP genotypes (??). It is a plaintext file with the following space separated
columns:
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1. ADM GWAS COM — datatype: numeric — This identifier is used as a link to project-specific CLSA
participant identifiers associated with data from questionnaires and physical assessments.

2. Locus — datatype: string — The HLA gene type identifier.

3. Allele1 — datatype: numeric — one allele group in 4-digit format.

4. Allele1 Probability — datatype: numeric — The individual probability that the call of allele1 is
correct.

5. Allele2 — datatype: numeric — The other allele group in 4-digit format.

6. Allele2 Probability — datatype: numeric — The individual probability that the call of allele2 is
correct.

7. Combined Probability — datatype: numeric — The overall probability that both calls have been
assigned correctly.

1.4 DNA extraction, genome-wide genotyping, and quality filtering

1.4.1 Sample storage and DNA extraction

Whole blood buffy coats were isolated from peripheral blood drawn into EDTA vacutainers following
centrifugation at 2000 × g for 10 minutes and removal of the plasma layer. Buffy coats from three 6 ml
EDTA vacutainers were pooled and 200µl aliquots transferred to 2D barcoded screw-top storage tubes.
Samples were immediately moved to -80◦C storage, and transferred to liquid N2 storage for up to one week
later until shipment to the genomics facility, after which they were stored at -20◦C. The time from blood
collection to -80◦C storage was under two hours for all participants. Genomic DNA was extracted from
blood samples using the purification protocol ”Chemagic DNA Buffy Coat Kit special 200µl prefilling
VD151007” on the Chemagic MSM I instrument (Perkin-Elmer article No. CMG-533). The reagents needed
for the extraction were included in the Chemagic Buffy Coat Kit (Perkin-Elmer article No. CMG-713).
Samples were eluted into 200µl/well of 10mM Tris-HCl pH 8.0. All extracted samples were quantified using
PicoGreen Reagent Kit (Life Technologies, catalog # P7589). A minimum concentration for passing of
samples was set at 10 ng/µl. Samples were subsequently normalized to 20 ng/µl, except for those with a
concentration of 10-20 ng/µl, which were used undiluted. Each sample was aliquoted into 3 separate
Samplosophy®2D barcoded tubes from LVL technologies. Two of the aliquots were stored at -80◦C for long
term storage. The last aliquot was stored at -20◦C and used to create normalized working plates.

1.4.2 Genotyping and calling

Each plate genotyped contained 92 CLSA DNA samples and 4 controls. Position A01 on each plate
contained the Affymetrix Reference Genomic DNA 103 (Catalog# 900421) or Personal Genome Project
NA24385 (male). Positions D06 and H10 contained the CEPH control 1463-02 (Coriell Cell Repositories,
catalog # NA12878, female Caucasian) or 1347-2 (Coriell Cell Repositories, catalog # NA10859, female).
Position G11 on each plate was reserved for a deionized water negative control. For sample preparation,
including whole genome amplification, fragmentation, precipitation and re-suspension, and hybridization to
the array, the Affymetrix protocol (Axiom 2.0 Assay Automated workflow on Affymetrix NIMBUS) was
followed. Samples were hybridized to UK Biobank arrays (Thermo Fisher Catalog # 902502). Axiom Array
plates were processed on the Affymetrix GeneTitan Multi-Channel (MC) Instrument. For first pass QC,
batches of 8 plates were analyzed using the Sample QC workflow of the Axiom™ Analysis Suite 2.0
software where a subset of 20,000 reliable probes are used to determine Sample QC and Dish QC, the
later being the measure of the resolution of the AT and GC signal contrast.
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1.4.3 Genotyping quality control and removal of duplicate genotyped participants

Genotyping was undertaken in 5 separate batches of roughly 5,000 samples each using Axiom™ Analysis
Suite 2.0, similar to UKBiobank genotyping QC documentation [11]. Genotype calling resulted in 27,010
successfully genotyped DNA samples. An inclusion SNP list containing 794,409 genetic variants was used
[1], as well as the following QC parameters for selecting samples passing to further analysis as follows
(default parameters are in brackets):

• Dish QC ≥ 0.82 (0.82)

• QC call rate ≥ 95.0 (97.0)

• Percent of passing samples ≥ 70.0 (95.0)

• Average call rate for passing samples ≥ 95.0 (98.5)

During the genotyping process, DNA plates or samples with genotype calling quality lower than the
thresholds set above were re-genotyped, resulting in some individuals being genotyped twice. Duplicate
genotyped participants were detected by KING version 2.1.3 [10] using the following sequential steps:

• Removed SNPs with minor allele frequency (MAF) < 0.05 in both batches.

• Merged batches into a single dataset using PLINK.

• Used the KING software program to detect duplicates (--duplicate parameter).

• For a given control sample, ensured that all duplicates detected were the same controls on another
DNA plate.

• For duplicate CLSA samples:

– Ensured that the participant identifiers were identical.
– Removed the sample with higher genotype missingness.

Using the above procedure to remove duplicates resulted in 26,622 uniquely genotyped CLSA participants.
All subsequent analyses, outlined below, were performed on this de-duplicated set of 26,622 genotyped
CLSA participants. For each of the three controls (see section 1.4.2), the genotyped sample with the
highest calling rate was retained as part of this genetic data release.

1.4.4 Sex chromosome composition

Sex defined by sex chromosome number was determined using PLINK version 1.9 [12] [13] using the
following sequential steps:

• Removed SNPs with MAF < 0.05.

• Retained linkage disequilibrium (r2 < 0.5) pruned SNPs on chromosome X and Y only using window
size of 20,000 markers and step size 2,000 markers (PLINK option --indep-pairphase 20000 2000
0.5).

• Determine sex chromosome composition by estimating heterozygisoty of X chromosome markers
and counting Y chromosome markers using PLINK (--check-sex ycount 0.4 0.8).

Distribution of chromosome X F estimates showed a gap between 0.4 and 0.8 (Figure 1). Using this
threshold, we obtained sex chromosome number and compared this to self-reported gender (Table 1).
Using sex chromosome composition we then set all heterozygous haploid and non-male Y chromosome
genotype calls to missing (PLINK --set-hh-missing option). All subsequent analyses in this document will
use sex chromosome composition where required.
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Self-reported Gender Sex Chromosome Composition Count
Male Male 13324
Female Female 13250
Female Male 17
Male Female 16
Female Missing 10
Male Missing 5

Table 1: Count of individuals by self-reported gender and sex chromosome composition.

Figure 1: Distribution of chromosome X F estimates for CLSA genotyped participants (y-axis truncated). Individuals
with chromosome X F estimates within the range of 0.4 to 0.8 (red) are considered to have undefined chromosomal sex.
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2 HLA Type Imputation

We used the HLA*IMP:02 method [14] and a multi-population reference panel [14] (ThermoFisher Catalog
# 000.911) to impute HLA types. The genotypes of 11 major MHC Class I and Class II loci with 4-digit
resolution were imputed for HLA-A, -B, -C, -DPA1, -DPB1, -DQA1, -DQB1, -DRB1, -DRB3, -DRB4, -DRB5.
For the positive controls, the imputation was done for 587 replicates of NA12878, 75 replicates of NA24385
and 4 replicates of NA10859. The alleles called with a posterior probability threshold as 0.7 were
compared to their known genotypes from literature [15, 16, 17, 18, 19]. Calling accuracy was 100% across
the loci. The imputation accuracy of genotyped CLSA participants was estimated by using the replicated
samples. The validation rate was 100% for all the replicates.
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3 Marker-based quality control

The quality control analysis consisted of 4 tests intended to check for consistency of markers across
various experimental factors, such as genotyping batch, participant sex, Hardy-Weinberg equilibrium
(HWE), and discordance of genotyping across control replicates. All tests were conducted on a subset of
ancestrally homogeneous participants (see section 3.1). Details of each test are described in section 3.2.
The purpose of the marker-based quality control is not to exclude SNPs for future analyses. Rather, it is to
flag SNPs which may have low quality. Therefore all SNPs are available for researchers, but the analysis
below identifies SNPs failing the tested QC parameters.

3.1 Subset for ancestrally homogeneous participants

The QC tests are only effective in the context of single ancestral population, such as individuals of
European ancestry. To address this requirement, the marker QC tests were performed on the largest
subset of ancestrally homogeneous participants. The following describes the procedure used to identify
these participants.
The largest ancestral group of participants was determined via comparison to 414 individuals across 4
populations from 1000 Genomes phase 3. These 4 ancestral groups represent individuals of Northern and
Western European (CEU), Han Chinese (CHB), Japanese (JPT) and Yoruban (YRI) ancestry. We first
extracted the Affymetrix UK Biobank Axiom array markers (N=794,409) from 1000 Genomes [20] and
retained markers with the following criteria:

• MAF > 0.05.

• Hardy-Weinberg equilibrium (HWE) p-value > 10−6.

• Single nucleotide substitutions with single character allele-codes (A, C, G, or T) (PLINK option
--snps-only just-acgt option).

• Markers with unambiguous strand, that is exclude A/T or C/G markers.

• Retained linkage disequilibrium (r2 < 0.1) pruned markers using window size of 1000 kb and step
size of 5 markers (PLINK option --indep-pairwise 1000 kb 5 0.1).

This resulted in a set of 45,251 markers from which we computed principal component loadings on the 414
individuals from 1000 Genomes phase 3. We then projected the CLSA samples onto the principal
components of the 1000 Genomes analysis. K-means clustering of the top 4 PCs was used to select the
largest cluster, which was found to overlap the cluster containing CEU population (Figure 2). There were
4,500, 4,570, 4,351, 4,471, and 6,469 samples in largest clusters in batch 1 to 5, respectively. The sum of
CLSA participants in the largest clusters from all batches represented 91% of the total number of
individuals genotyped.

3.2 Marker-based quality control tests

The marker quality control tests were performed on a subset of 24,358 ancestrally homogeneous
participants (see section 3.1) typed at 794,409 markers. We conducted 4 tests to check for marker
consistency across various experimental factors:

1. Discordance of genotype frequency between batches.

2. Departure from Hardy-Weinberg equilibrium (HWE).

v20201207.1851 10



Figure 2: Principal component (PC) plots. (A) Plot of first 2 PC for the analyzed populations from 1000 Genomes. (B-F)
Projection of CLSA participants onto 1000 Genomes PC plot for genotype batch 1 to 5 followed by k-means clustering
of PC1-4 (grey points). The largest cluster overlaps the 1000 Genomes CEU population (red points and percentage of
total in batch is provided).
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Figure 3: Count of markers that failed discordant genotype frequency test in one or more batches.

3. Discordance across control replicates.

4. Discordance in genotype frequency between males and females.

The status of each marker in each test is noted in the marker quality control information file.

3.2.1 Choosing a p-value threshold for the marker quality control tests

We determined a multiple-testing corrected p-value threshold for quality control tests as 3.15× 10−10. For
the 794,409 markers and 5 batches, this p-value cut-off can be considered as a family-wise error rate of
0.0013 for each test. Since many tests may be positively correlated, the threshold is conservative and will
identify markers with strong evidence of deviation from the null hypothesis.

3.2.2 Test 1: Discordant genotype frequency between batches

In samples drawn from the same ancestral population we would not expect differences in genotype
frequencies between batches at the same marker beyond what would be expected by chance, given the
available sample size and the frequency of the alternate allele. To detect deviation in genotype frequency
of markers between batches we tested the null hypothesis that the genotype frequency was the same for a
given marker between a single batch and the remaining batches combined. We used a Fisher’s exact test
on the 2x3 table of genotype counts (or 2x2 table for haploid markers). The majority of markers did not
exhibit significant deviation in genotype frequency (p-value < 3.15× 10−10, N=779,656). The remaining
markers showed significant deviation in one or more batches (Figure 3). The marker quality control file
contains the count of failed batches for each marker.

3.2.3 Test 2: Departure from Hardy-Weinberg equilibrium

Using PLINK (--hardy option), we conducted the test for departure from Hardy-Weinberg equilibrium
(HWE) using the exact test [21] for each marker in each batch. Only diploid regions of the genome were
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Figure 4: Count of markers that failed Hardy-Weinberg equilibrium test in one or more batches.

tested, including all autosomes, the pseudo-autosomal regions on the X chromosome, and females only on
the sex-specific region of the X chromosome. There were 7,790 markers with a HWE p-value less than the
multiple-testing corrected threshold of 3.15× 10−10 in one or more batches (Figure 4), with relatively fewer
markers that failed in more than one batch (N=3,003). The marker quality control file contains the count of
failed batches for each marker.

3.2.4 Test 3: Discordance across control replicates

There were 4 control samples on each genotyping plate: Axiom Reference Genomic DNA 103, CEPH
NA24385, CEPH NA12878 and CEPH NA10859. Using these control genotypes we determined the quality
of the genotype calling for a specific marker as we expected the genotypes to be fully concordant for a
control sample across all plates. For each marker and control sample we computed a discordance metric
(d) as defined below:

d = 1− max(naa,nab,nbb)

naa + nab + nbb

where naa,nab,nbb is the number of times the genotypes AA, AB, and BB are called for the individual at that
marker. The distribution of genotype discordance (d) by control sample and batch is presented in Figure 5.
There were 27,937 markers with control replicate discordance greater than 0.05 (that is less than 0.95
concordance) in one or more control samples. The marker quality control file contains the count of failed
control samples for each marker.

3.2.5 Test 4: Genotype frequency discordance stratified between chromosomal sexes

We would not expect differences in genotype frequencies between chromosomally defined males and
females for any marker except those on the Y chromosome (apart from loci associated with survival to
recruitment age, that have sex-specific effects, e.g. X-linked recessive disorders). To detect deviation in
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Figure 5: Frequency distribution of genotype discordance for control samples. Vertical line at genotype discordance
threshold of 0.05.

genotype frequency of markers between the chromosomal sexes we tested the null hypothesis that
genotype frequency is the same for a given marker between males and females. We used Fisher’s exact
test on the 2x3 table of genotype counts (or 2x2 table of allele counts for the sex-specific region of the X
chromosome). There were 248 markers with discordant genotype counts or allele counts between batches
with Fisher’s p-value < 3.15× 10−10 (Figure 6). These are labeled in the marker quality control file.

3.2.6 Flag low frequency SNPs and insertions/deletions

In addition to the above 4 tests, insertions/deletions and low-frequency SNPs (MAF < 0.005) were flagged
as they may bias subsequent sample-based quality control (see section 4). There were 95,363
low-frequency SNPs (MAF < 0.005) and 15,616 indels.

3.3 Summary of results from marker-based tests

There were 37,706 markers that were flagged by one or more of the 4 tests. The effect of this quality
analysis is depicted by comparing Figure 7 with Figure 8 where there is clear improvement in the
concordance in minor allele frequency between batches after removal of these markers. Results for the
above four tests are provided for all of the 794,409 markers and available within the marker quality control
file. It is recommended to remove the 37,706 markers that fail one or more of the 4 quality control tests. In
addition, we invite researchers to further exclude makers with low MAF and indels dependent on the
analytical requirements. For instance, subsequent analyses in this document (see section 4 and section 5)
have excluded markers that are within one or both of these categories.
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Figure 6: Count of markers that failed discordant genotype frequency test between males and females in one or more
batches.
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Figure 7: Pairwise plot of allele frequency of SNPs from genotype batch 1 to 4.
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Figure 8: Pairwise plot of allele frequency of SNPs that pass all 4 tests from genotype batch 1 to 5.
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4 Sample-based quality control

This sample-based quality control was intended to identify genotyped samples of low-quality, identify
related individuals, and provide a genetic-based description of ancestry. We used a set of high quality
SNPs to ensure that no bias was introduced due to genotype batch effect or other genotyping artifacts (see
section 3.2). The purpose of this quality control analysis was to quantify the above mentioned properties of
each genotyped sample, not to exclude samples from this data release. We thus encourage researchers
using this data release to filter samples based on these properties, or devise their own sample quality
control metrics that satisfy their research requirements.

4.1 Selection of markers for sample-based quality control

We selected among the 794,409 genetic markers based on the following criteria:

• Passed all 5 tests from marker-based quality control (see section 3.2) (removed 37,706 markers).

• Was not an insertion/deletion.

• Minor allele frequency > 0.01.

• Marker-wise missingness < 0.01.

The above filtering resulted in a total of 573,386 genetic markers. These genetic markers where then
pruned to a set of 161,536 independent markers (PLINK option --indep-pairwise 1000 kb 5 0.1).

4.2 Determine familial relatedness

Familial relationships among CLSA participants were not recorded in the questionnaires or interviews.
However, this information is essential for some epidemiological and most genomic analyses. Using the
KING software program version 2.1.3 [10] we computed all pairwise kinship coefficients and noted all pairs
with inferred relatedness of 3rd degree or closer (Table 2). KING uses both the analysis of
identity-by-descent (IBD) segments as well as proportion of IBD and kinship coefficient to infer relatedness.
Figure 9 depicts results from these two analyses and individuals are labeled to denote inferred relatedness.
Individuals with an inferred relationship of 3rd degree or closer are labeled in the sample quality control file
and the sample relatedness file.

Inferred Relationship Count
Unrelated 123294
3rd degree 1066
Full Sibling 357
2nd degree 315
Parent Offspring 176
MZ Twin 1

Table 2: Count of kinship pairs per type of inferred relationship.
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Figure 9: Inference of familial relatedness using KING. (A) Inference using IBD segments. (B) Inference using proportion
IBD and kinship coefficient. Relationships in legend are abbreviated as: MZ=Monozygotic twin, PO=Parent/offspring,
FS=Full sibling, 2nd=Second-degree relative, 3rd=Third-degree relative, Distant=Greater than 3rd degree relative,
UN=Unrelated. Limits for inferring relationship type are indicated by dashed lines that are color-coded to match those
listed in the legend.
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4.3 Detecting outliers in heterozygosity and missing rates

Sample-wise genotype quality is typically assessed via the analysis of heterozygosity and genotype
missingness, where extreme values in these measures may suggest low quality genotyping or
cross-contamination of biological samples. We computed heterozygosity using PLINK (--het option),
which implements the following formula for determining the proportion of non-missing genotypes that are
heterozygous:

h =
Nnm −Nhom

Nnm

where Nnm is the count of non-missing genotypes and Nhom is the count of homozygous genotypes.
Sample-wise genotype missingness was computed using PLINK (--miss option). We observed 15
individuals with extreme values in heterozygosity and missingness (Figure 10). These outliers are identified
in the sample quality metrics file. A genotyped sample’s heterozygosity is partially dependent on
population structure because the frequency of the alleles at one or more genetic markers may differ
between populations. To illustrate this effect we first grouped self-reported ancestry into fewer categories
(Table 3), with counts for each of these categories presented in Table 4. Visualization of sample-wise
heterozygosity versus genotype missingness revealed that as expected heterozygosity is dependent on
self-reported ancestry (Figure 10).

Self-reported Ancestry Category
Arab Arab
West Asian Arab
Black Black
Chinese East Asian
Japanese East Asian
Korean East Asian
Latin American Latino
Don’t know Other
Other Other
Refused Other
South Asian South Asian
Filipino South-East Asian
Southeast Asian South-East Asian
White White

Table 3: Self-reported ancestry and derived category.
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Figure 10: Sample-wise heterozygosity versus genotype missingness. Points are color coded according to ancestry
category. Outliers are marked with a red plus sign.
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Ancestry Category Count
White 25172
Mixed 318
South Asian 223
East Asian 220
Other 172
Black 170
West Asian 105
Latin American 85
Southeast Asian 83
White and Asian 41
White and Black 33

Table 4: Count of genotyped individuals per ancestry category.

4.4 Population structure

Population structure was computed by projecting principal components from 1000 Genomes using the
method developed by Abraham et al. (2017) [22]. This measure of population structure can be used to
complement self-reported ancestry and is a common method for controlling for population stratification in
genome-wide association studies [23, 24]. We first extracted the Affymetrix UK Biobank Axiom array
markers from 1000 Genomes [20] and retained markers with the following criteria:

• MAF > 0.05.

• Hardy-Weinberg equilibrium (HWE) p-value > 10−6.

• Single nucleotide substitutions with single character allele-codes (A, C, G, or T) (PLINK option
--snps-only just-acgt option).

• Markers with unambiguous strand, that is exclude A/T or C/G markers.

• Retained linkage disequilibrium (r2 < 0.1) pruned markers using window size of 1000 kb and step
size of 5 markers (PLINK option --indep-pairwise 1000 kb 5 0.1).

This resulted in a set of 87,848 markers from which we computed principal component loadings on the
2504 individuals from 1000 Genomes phase 3. We then projected the 26622 CLSA individuals onto the
principal components of the 1000 Genomes analysis. The pairwise comparison of the top 4 principal
components are depicted in Figure 11.

4.5 Selection of the European ancestry subset

To reduce the effect of population structure on analyses such as GWAS it is recommended to use a subset
of the population with relatively homogeneous ancestry. The majority of individuals in this genomic data
release are of self-reported European ancestry (N=25,172, see section 4.4). We used genomic information
and PCA analysis to determine a subset of individuals of homogeneous European ancestry, and refer to
this subset as the ”CLSA European ancestry subset”.
To determine the CLSA European ancestry subset we clustered the top 4 principal components from the
analysis of population structure in the previous section (see section 4.4) into 6 clusters. Visualization of
these cluster alongside those from 1000 Genomes reveals a clear overlap of the largest cluster (cluster 4,
N=24,658) with populations of European ancestry in 1000 Genomes. Moreover, this large cluster contains
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Figure 11: Population structure of CLSA genotyped participants. Pairwise plots of the top 4 principal components, with
points color-coded according to self-reported ancestry groupings.

the vast majority of individuals in CLSA that self-report European ancestry (Table 5). The European
ancestry subset has markedly reduced variance in the top principal components as compared to the entire
CLSA cohort (Figure 13). The top 20 principal components of the PCA analysis are provided in the sample
QC file accompanying this data release, as well as the top 10 principal components of the PCA analysis
from the CLSA European ancestry subset.
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Figure 12: Determining the CLSA European ancestry subset. (A) Top 4 principal components from all 1000 Genomes
populations labelled and coloured. (B) Top 4 principal components from CLSA color coded and labelled by cluster
number.
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Figure 13: Eigenvalues for PCA analysis of the entire cohort (grey) and the European ancestry subset (cluster 4, light
blue), demonstrating a reduction in genetic variance within the European ancestry subset.
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1 2 3 4 5 6
Black 7 0 156 0 7 0

East Asian 0 214 1 2 0 3
Latin American 1 0 1 2 9 72

Mixed 11 11 7 207 61 21
Other 11 5 8 54 53 41

South Asian 211 5 0 0 7 0
Southeast Asian 20 61 0 0 1 1

West Asian 4 0 1 2 98 0
White 7 2 0 24380 742 41

White and Asian 3 3 0 5 19 11
White and Black 2 0 11 3 17 0

Table 5: Count of individuals per self-reported ancestry and k-means cluster.
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5 Genotype Imputation

5.1 Introduction

Genotype imputation is a computational method to predict marker genotypes that are not directly
genotyped by an assay, such as a genotyping array. The imputation process uses a reference panel of
densely whole genome sequenced individuals to predict genotypes in an array genotyped study sample for
which only a subset of these genetic markers have been genotyped. This denser set of imputed markers
increases the power of genetic association studies and enables fine-mapping of causal variants. For more
information please refer to Fuchsberger et al. 2014 [25]. This imputed data set contains approximately 308
million genetic variants.

5.2 Marker filtering

As input to the imputation process we used the 26,622 CLSA participants that passed quality control (see
section 4), and the set of 716,347 markers that satisfy the following criteria:

• Pass all marker 4 QC tests (see section 3.2).

• SNP-wise missingness < 0.05.

• Minor allele frequency > 0.0001.

Genotype imputation requires that the marker reference alleles match the human genome GRCh37
reference sequence. Using the bcftools +fixref plugin, this check removed 62,618 markers, resulting in
a total marker count of 653,729 used as input into the imputation process.

5.3 Phasing, Imputation and Reference Panel

Phasing and imputation was conducted using the TOPMed reference panel [3] at the University of Michigan
Imputation Service [26]. We used the TOPMed reference panel version r2, containing 97,256 reference
samples at 308,107,085 genetic markers. We used this imputation service to pre-phase and impute the
CLSA genotype data using EAGLE2 [27] and Minimac [25], respectively. Both autosomal and X
chromosome variants were imputed. The imputation was carried out in two batches of 13,310 and 13,312
CLSA samples. Each batch also included the one of each 4 control samples (see section 1.4.2). The two
batches where subsequently merged into a single dataset.

5.4 Imputation Performance

Imputation quality using the TOPMed reference panel was assessed using the marker-wise information
measure (Rsq), and compared to the imputation using the Haplotype Reference Consortium reference
panel containing 32,488 reference samples and 40.4 million genetic markers [28]. For each imputation
data set, information measures for all SNPs on chromosome 22 were stratified into minor allele frequency
(MAF) bins prior to comparison. Comparison of imputation quality between the two reference panels
demonstrated that the TOPMed reference panel yielded overall higher imputation quality, likely due to the
larger number of samples included in the reference panel (Figure 14).
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Figure 14: Imputation quality of the CLSA cohort using the TOPMed versus Haplotype Reference Consortium reference
panels stratified by minor allele frequency bins (data shown is from chromosome 22).
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genomes from the nhlbi topmed program. bioRxiv, 2019.

[4] Clare Bycroft, Colin Freeman, Desislava Petkova, Gavin Band, Lloyd T Elliott, Kevin Sharp, Allan Motyer, Damjan Vukcevic,
Olivier Delaneau, Jared O’Connell, Adrian Cortes, Samantha Welsh, Gil McVean, Stephen Leslie, Peter Donnelly, and Jonathan
Marchini. Genome-wide genetic data on 500,000 uk biobank participants. bioRxiv, 2017.

[5] Gavin Band and Jonathan Marchini. Bgen: a binary file format for imputed genotype and haplotype data. bioRxiv, 2018.
[6] QCTOOL v2. https://www.well.ox.ac.uk/˜gav/qctool/index.html, Mar 2018. [Online; accessed 19. Jul. 2019].
[7] gavinband / bgen / wiki / bgenix — Bitbucket. https://bitbucket.org/gavinband/bgen/wiki/bgenix, Jul 2019. [Online;

accessed 19. Jul. 2019].
[8] The BGEN format. https://www.well.ox.ac.uk/˜gav/bgen_format, Apr 2019. [Online; accessed 19. Jul. 2019].
[9] Standard data input - PLINK 2.0. https://www.cog-genomics.org/plink/2.0/input#oxford, Aug 2020. [Online; accessed 6.

Aug. 2020].
[10] Ani Manichaikul, Josyf C. Mychaleckyj, Stephen S. Rich, Kathy Daly, Michèle Sale, and Wei-Min Chen. Robust relationship
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